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Abstract

Philosophers’ two favorite accounts of rational choice, Evidential Decision
Theory (EDT) and Causal Decision Theory (CDT), each face a number of seri-
ous objections. Especially troubling are the recent charges that these theories are
dynamically inconsistent. I note here that, under the epistemic assumptions that
validate these charges, every decision theory that satisfies a pair of attractive pos-
tulates is doomed to a similar fate and then survey various lessons rational choice
theorists might opt to draw from this.

1 Introduction
The choices we make often provide us with information about the world. My decision
to turn the spigot valve is evidence of imminent water flow. Opting to press my neigh-
bor’s doorbell suggests that she may come and open the door. A flip of the light switch
on my wall portends a change in ambient lighting conditions. Etc. In cases like these,
the evidential bearing of my decision upon the relevant state of the world is underwrit-
ten by a causal connection. Turning the spigot valve is evidence that water will flow
because turning the valve tends to cause water to flow. And so on. This is the typical
case and generates no paradox.

More puzzling are those cases in which our choices seem to provide evidence for
states of affairs that they have no tendency to cause. Game theory supplies a familiar
example. My friend and I are to play a Prisoner’s Dilemma. I take my practical reason-
ing to be similar to her’s and hence my behavior to be indicative of her’s. My choice
to cooperate (defect) is then evidence of my friend’s choice to cooperate (defect), even
though our respective choices are causally isolated from one another. Here, analogical,
rather than causal, reasoning seems to motivate an evidential connection between my
choice and my friend’s.1

Natural as such reasoning may seem, the difficulties it causes for the theory of
rational choice are profound. When the evidential and causal import of an agent’s
choices come apart, is an option’s choiceworthiness to be fixed by its evidential ‘news

1This example is famously discussed by Lewis 1979.
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value’ or by its causal efficacy in promoting good outcomes?2 Or perhaps by some
further quantity?3 No answer so far ventured is without its drawbacks and, a vigorous
50 year debate notwithstanding, consensus has yet to emerge on which is the least
unpalatable.

One particularly disturbing feature of both the evidentialist and causalist proposals
is that they leave agents liable to dynamic inconsistency in certain well-crafted sequen-
tial choice problems. The plans that such theories recommend as optimal ex ante in
these problems can diverge from those they license an agent to actually carry out, step
by step. While some of the extant alternative proposals evade this problem, they do
so only at enormous cost (e.g., by denying that rational choice under certainty always
goes by utility maximization). This is no accident, as I argue below. Decision theory
faces a deep problem regarding how to go about coherently prescribing dynamic plans
to agents that treat those plans (or their constituent acts) as signs of causally remote
states.

After introducing some necessary background (§2-§4), my case for this conclu-
sion will come in three acts. In the first, building on previous results establishing the
dynamic inconsistency of evidential decision theory, I argue that, in the absence of
nonstandard epistemic constraints, any plausible decision theory that violates a causal
dominance principle is doomed to be dynamically inconsistent (§5). In the second, I
generalize Arif Ahmed’s argument that causal decision theory is dynamically incon-
sistent to conclude that any plausible decision theory that satisfies the aforementioned
causal dominance principle shares a similar fate (§6), again without positing additional
epistemic constraints, leaving us to conclude that no plausible decision theory can sat-
isfy dynamic consistency in the absence of nonstandard epistemic constraints. Finally,
in the third, I demonstrate that a pair of epistemic constraints on priors (Backward
Autonomy and Full Autonomy) suffice to render, respectively, evidential and causal de-
cision theory dynamically consistent (§7-§8). I conclude by briefly summarizing and
discussing the import of these results for rational choice theory (§9).

2 Formal Background
Speaking informally, a decision problem is a story featuring a protagonist, the agent,
tasked with making a (possibly trivial) sequence of choices, perhaps strewn amidst
various shifts in her decision relevant attitudes (e.g., her beliefs and values). If the
decision problem is well posed, its telling ought to be detailed enough for its intended
audience, the decision theorist, to identify at each point in the story which of the agent’s
remaining potential courses of action are maximally instrumentally valuable for her,
i.e., best advance her aims. The required details must specify both the (perceived)
structure of the situation the agent faces (e.g., the number of possible decisions she

2For sophisticated defenses of the evidentialist and causalist answers, respectively, see Ahmed 2014b and
Joyce 1999.

3For a variety of disparate alternatives to the strictly evidentialist and causalist answers, see, e.g., Yud-
kowsky 2010, Wedgwood 2011, Levinstein and Soares 2020, Gallow 2020, Barnett 2022, Podgorski 2020,
and Rothfus 2022.
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could face, the possible information she might gain along the way, etc.) and the agent’s
own decision relevant attitudes. Each of these features ought to be captured in any
formal model of decision problems.

Advancing such a model, we will think of a decision problem as a 5-tuple, ⟨A ,T,n′,P,V ⟩,
where:

• A is an algebra of propositions or events, closed under the standard Boolean
connectives. These propositions serve as agents’ ultimate objects of belief and
desire.4

• T is a finite Bayesian decision tree, that is, a tree-structured graph whose nodes,
NT , are ordered by an immediate successor function, N+, and are partitioned into
choice nodes, natural nodes, and terminal nodes, with one node uniquely serving
as T ’s initial node, labeled ‘n0’. Every node n ∈ NT is associated with a proposi-
tion, S(n) ∈ A , characterizing the agent’s state of information at n. We assume
that the event associated with a non-terminal node is always partitioned by the
events associated with the node’s immediate successors. I will write ‘T (n)’,
where n ∈ NT , to denote the tree that is the truncation of T at n, and T (X), where
X ∈ A , to denote the truncation of T by X , i.e. the tree formed by intersecting
S(n) with X for all n ∈ NT and then discarding all nodes with empty information
states.5

• n′ ∈ NT represents a concrete position occupied by an agent within the broader
decision scenario represented by T . Note: with d a fixed decision problem, I
will sometimes employ nd (Ad ,Td , etc.) to denote the node (algebra, tree, etc.)
associated with d.

• P := {PX
n }n∈NT ,X∈A ∩S(n) is a family of node-indexed causal credence measures

defined on A . PX
n (Y ) expresses an agent’s assessment of the causal probability

of Y given X from her perspective at node n, i.e. the extent to which an agent
takes X to causally promote Y from this vantage point.6 We identify an agent’s
standard credences, Pn, capturing her unconditional degrees of belief in the mem-
bers of A at n, with her causal probabilities at n given a tautology, i.e. PT

n .

• V := {Vn}n∈NT is a family of node-indexed desirability functions defined on A .
Vn measures an agent’s degrees of desire at n that the various members of A be
found to be true. I assume that for every Vn there exists a finite partition O of
S(n), such that for each o ∈ O and o′ ∈ A such that o′ ⊆ o, Vn(o) =Vn(o′). The
members of such a partition are outcome propositions with respect to Vn.

4The formal framework assumed in this paper is thus broadly in line with that of Jeffrey 1965/1983.
5I largely follow authors like Hammond 1988, McClennen 1990, and Cubitt 1996 in my presentation of

decision trees, save that I allow learning pursuant to choice nodes as well as natural nodes.
6On one approach, PX (Y ) might be identified with the standard probability of a non-backtracking sub-

junctive conditional featuring X as antecedent and Y as consequent, i.e. P(X□→Y ), though this would
require appropriately closing A under this conditional operator. We might also compute PX (Y ) relative to
a given background partition of causal factors or dependency hypotheses that are causally independent of
X and individually suffice to fix the causal bearing of X upon Y and its negation. Writing such a (finite)
partition as ‘{Ki}i ⊆A ’, we might define PX (Y ) = ∑i P(Y |XKi)P(Ki). I aim to be maximally ecumenical in
my understanding of causal probabilities by not insisting upon any of these more specific analyses.
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The limitations of this framework should be recognized at the outset. Not all decision
problems in the informal sense admit suitable models of the suggested form. For exam-
ple, the restriction to finite Bayesian decision trees precludes consideration of infinite
decision puzzles. Moreover, the assumption that credences and desirabilities are real-
valued functions precludes consideration of agents with various nonstandard attitudes
that don’t admit of a real-valued representation. Further, the evolution of information
in Bayesian decision trees is always assumed to be propositional in form and may pre-
clude e.g., problems involving either non-propositional evidence or de se uncertainty.
The assumed existence of finite outcome partitions in every decision problem also rules
out decision problems in which agents have infinitely fine-grained values. Finally, if
attitudes beyond (causal) credences and desirabilities (e.g., risk-sensitivity à la Buchak
2013) can count as decision relevant, then the information encoded in a formal decision
problem will, in some cases, be insufficient to separate rational from irrational courses
of action. All such problems fall then outside the proposed model’s domain of applica-
bility.7 Nonetheless, such limitations noted, a vast array of typical decision scenarios
of interest to philosophers fall squarely within this domain.

In fact, from the standpoint of ideal decision theory, which aims to give practical
recommendations to rationally unified agents, the domain of decision problems so con-
strued is in some sense too broad. The above characterization allows us to consider,
for example, decision problems in which agents exhibit non-probabilistic credences or
arbitrary shifts in their desirabilities over time. Such decision problems seem to be
incoherent in the sense that the agents they feature fail to be rationally unified over the
course of the story they encode. What exactly is required for a decision problem to be
coherent is a central question of this essay, but we may begin characterizing this notion
by noting several assumptions that are standardly made in this regard:

• Probabilism: All coherent decision problems are probabilistic, where a decision
problem, d = ⟨A ,T,n′,P,V ⟩, is probabilistic just in case for every node n ∈
NT and for every proposition X ∈ A ∩ S(n), PX

n is a probability measure on A
satisfying PX

n (S(n)) = 1.

• Desirabilism: All coherent decision problems are desirabilistic, where a deci-
sion problem, d = ⟨A ,T,n′,P,V ⟩, is desirabilistic just in case, for all n ∈ NT ,
Vn is defined on the non-null members of A and satisfies Jeffrey’s desirability
axiom, both with respect to Pn, i.e. for any pair of non-null, mutually exclu-
sive propositions X ,Y ∈ A ∩ S(n), Vn(X ∨Y ) = Pn(X |X ∨Y )Vn(X)+Pn(Y |X ∨
Y )Vn(Y ).

• Probabilistic Conditionalization: All coherent decision problems satisfy prob-
abilistic conditionalization, where a decision problem, d = ⟨A ,T,n′,P,V ⟩, sat-
isfies probabilistic conditionalization just in case if na precedes nb along some
branch of the given tree T , then, for all X ∈ A : Pnb(X) = Pna(X |S(nb)) =
Pna(XS(nb))/Pna(S(nb)).

• Desirabilistic Conditionalization: All coherent decision problems satisfy de-
sirabilistic conditionalization, where a decision problem, d = ⟨A ,T,n′,P,V ⟩,

7I lift this phrase from Titelbaum (2013)’s illuminating discussion of modelling frameworks.
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satisfies desirabilistic conditionalization just in case if na precedes nb along
some branch of the given tree T , then, for all X ∈ A : Vnb(x) = Vna(X |S(nb)) =
Vna(XS(nb))−Vna(S(nb)).8.

Going forward, I will take all this on board. That is, I will assume that all coherent
decision problems are probabilistic, desirabilistic, and satisfy conditionalization in both
its probabilistic and desirabilistic variants. I shall call all problems satisfying these
properties, as well as an additional requirement introduced below excluding backward
causation, standard decision problems. It is an open question whether the informal
notion of a coherent decision problem as one whose protagonist is rationally unified is
adequately explicated by the formal definition of standard decision problems. As I shall
suggest, one possible lesson of this essay is that the class of standard decision problems
is, in the presented framework, strictly broader than the class of truly coherent decision
problems.

I take the primary objects of deliberation for a rational agent facing a coherent deci-
sion problem construed as above to be plans. Given a tree T , a plan p specifies a unique
move for every choice node in T that an agent facing T could reach, given implemen-
tation of earlier portions of p. It thus traces a unique path through the tree, given any
combination of moves by nature at its nodes. To render plans suitable objects of desir-
ability in our framework, we need to identify them formally with propositions. Since
plans correspond to appropriate sets of terminal nodes (i.e., those they might terminate
in, if executed perfectly), we can identify a plan with the disjunction of propositions
associated with its corresponding terminal nodes (i.e., the disjunction of all events its
flawless execution might terminate in). This proposal can be worked out recursively.9

Definition 1. Let n ∈ NT . The set of plans available at n in T , denoted ‘Ω(T,n)’, is
defined recursively as follows:

1. If n is a terminal node, then Ω(T,n) = {S(n)}.

2. If n is a choice node, then

Ω(T,n) = {S(n′)∧ p(n′) : n′ ∈ N+(n), p(n′) ∈ Ω(T,n′)}.

3. If n is a natural node, then

Ω(T,n) =

{∧
i

[S(ni)⊃ p(ni)] : ni ∈ N+(n), p(ni) ∈ Ω(T,ni)

}
.

We will also need the notion of a plan continuation. Fix a tree T and let na and nb
be nodes of T such that na precedes nb. If p is a plan at na that makes arrival at nb

8See Bradley 2017, p. 97, for more on Conditional Desirability.
9This definition of plans is employed also in Rothfus 2020, which raises the worry that plans so construed

will often fail to form a partition, i.e., multiple distinct plans may be compatible with one another such that it
may be possible for each to be ultimately implemented. I am hesitant to claim this is a problem myself, since
such compatibility does not seem obviously problematic, but, if it is, the solution would involve replacing
the material conditional employed in definition 1 with a non-truth-functional counterpart. This suggestion is
explored a bit in Huttegger and Rothfus 2021, but merits further reflection.

5



possible (i.e. a plan consistent with S(nb)), then the continuation of p at nb is just the
conjunction of p and S(nb). If p is incompatible with arrival at nb, then we can be
content to leave p(nb) undefined. Where defined, p(nb) will itself, of course, be a plan
at nb. We let ‘Ω(T,na)(nb)’ designate the set of plan continuations at nb of plans at na.

With the notion of a plan defined, we can introduce the final restriction on the class
of standard decision problems promised above:

• No Backward Causation: In all coherent decision problems, future plans are
judged causally independent of epistemologically prior states, that is, where d =
⟨A ,T,n′,P,V ⟩ is a decision problem, if na is any natural node in T and p ∈
Ω(T,na),nb ∈ N+(na), then Pp

na(S(nb)) = Pna(S(nb)).

This principle recognizes that although the ordering of nodes in a Bayesian deci-
sion tree directly represents neither the causal nor temporal ordering of events in the
world,10 the epistemological ordering it does represent justifies, at least in all but the
most bizarre cases, certain causal assumptions. In particular, anticipated future de-
cisions cannot be properly understood as having a causal bearing upon events whose
truth value will be ascertained prior to their being taken. What I do on Tuesday can-
not causally influence what I learn on Monday. To abandon this assumption is, by my
lights, to pass through the looking glass into a world of decisions problems which are
either logically problematic or at least normatively intractable.

Finally, a decision theory, D, is a (possibly partial) function that maps a decision
problem ⟨A ,T,n′,P,V ⟩ to a non-empty subset of Ω(T,n′), returning those plans in
Ω(T,n′) that the theory judges to be of maximal instrumental utility for an agent whose
epistemic and axiological attitudes are as given by P and V . If two decision problems
d1 = ⟨A ,T,nd1 ,P,V ⟩ and d2 = ⟨A ,T,nd2 ,P,V ⟩ differ only in that nd1 precedes nd2
along some branch of T , I will say d2 is a continuant of d1. If nd2 ∈ N+(nd1), I will say
that d2 is an immediate continuant of d1. With the necessary formal preliminaries in
place, we can now turn to considering what norms a plausible decision theory ought to
satisfy.

3 Normative Principles
Normative decision theorists are interested in defining a rational decision theory, that
is, one adequate to the task of effectively guiding an ideally rational agent’s practical
deliberation across various potential decision problems so as to best further her ends.
There are various principles that such a decision theory should plausibly satisfy, or at
least satisfy across a suitable range of problems. My central normative postulate here is
that decision theories ought to be dynamically consistent across the range of coherent
decision problems:

Definition 2. A decision theory, D, is dynamically consistent across a domain of
decision problems Z just in case D is defined on all members of Z and, for all decision

10For an illuminating critique of this feature of decision trees, see Spohn unpublished.
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problems d1 = ⟨A ,T,nd1 ,P,V ⟩ and d2 = ⟨A ,T,nd2 ,P,V ⟩ such that d1,d2 ∈ Z and
d2 is a continuant of d1, if p ∈ D(d1) and p(nd2) is defined, then p(nd2) ∈ D(d2).

If a decision theory recommends a particular policy as optimal in a particular de-
cision scenario, then in any continuation of that scenario compatible with the recom-
mended policy, the theory should not undercut itself by reneging on its initial recom-
mendation and suggesting something new. Or, rather, it shouldn’t do so as long as the
decision problem is coherent. Of course, if an agent is turned against herself, then
the fact that a decision theory offers her contradictory recommendations (before and
after the Sirens’ song, so to speak) need be no strike against the decision theory. The
blame for its discrepancy in advice lies squarely with the incoherence (synchronic or
diachronic) of the agent’s decision relevant attitudes. But if a decision problem and its
continuants feature a rational agent holding to a single set of unified aims, then we are
within our rights to insist that a reasonable decision theory not introduce any dynamic
inconsistency.11

As a plausible supplemental norm, I will also assume that decision theories ought
to be independent:

Definition 3. A decision theory, D, is independent just in case for all decision prob-
lems d1 and d2 on which D is defined such that Ω(Td1 ,nd1) = Ω(Td2 ,nd2), PX

nd1
= PX

nd1

(for relevant X), and Vnd1
=Vnd2

, D(d1) = D(d2).12

An independent decision theory is one whose recommendations in a decision problem
are solely a function of the plans available in the problem together with the relevant
agent’s epistemic and axiological attitudes at the time the decision must be made. Other
features of the decision problem, e.g., the structure of the decision tree and the agent’s
possible preceding and succeeding attitudes, should play no role. Of course, from the
perspective of a (potentially disunified) planning agent, such factors surely can matter
to what currently available act the agent ought to select. But a decision theory, as I am
construing matters, is not primarily in the business of giving such advice but rather pur-
ports to tell an agent which logically available course of action is most instrumentally
valuable in terms of furthering her ends, whether or not such a course is feasible given,
e.g., shifts in her future desirabilities, anticipated irrationality, etc. On this view of what
a decision theory amounts to, independence is an eminently plausible principle. Lastly,
we shall have occasion to introduce a further supplemental norm of conservatism in the
next section, which, alongside dynamic consistency and independence, will complete
our list of criteria for assessing a decision theory’s normative adequacy.

Before we can state this norm, however, we must introduce the two dominant deci-
sion theories among philosophers, in terms of which conservatism will be defined.

11Principles akin to a dynamic consistency requirement have been endorsed by Hammond 1988, Cubitt
1996, McClennen 1990, Buchak 2013, Ahmed 2014b, Huttegger and Rothfus 2021, and Weatherson MS.
The dynamic consistency norm endorsed here differs from that found in some of these authors in that it
applies to decision theories rather than to agents, which may enable it to sidestep some of the objections
brought against diachronic norms of rationality by partisans of time-slice rationality, e.g. Hedden 2015. For
an overview of some of the relevant historical debates regarding dynamic consistency, see Steele 2010.

12Here I use Td to denote the decision tree figuring in problem d.
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4 EDT vs CDT
The simplest and most elegant decision theory is Evidential Decision Theory (EDT).

Evidential Decision Theory: If d = ⟨A ,T,n′,P,V ⟩, then
EDT (d) := {p ∈ Ω(T,n′)|Vn′(p)≥Vn′(p′),∀p′ ∈ Ω(T,n′)}.

EDT judges the practically best plans to be the ones that are V -maximal. According
to evidentialists then, rational choice simply consists in maximization of desirability.
Causal considerations need never enter the story.

Alas, simplicity does not guarantee rationality. Perhaps the most famous objection
to EDT is that it violates a plausible Causal Dominance principle:

Definition 4. Let d = ⟨A ,T,n′,P,V ⟩ be a decision problem and a,b ∈ Ω(T,n′). Say
that a causally dominates b in d, written ‘a ▷d b’, just in case there exists a finite
partition {S1,S2, ...,Sk} of A ∩S(n′) such that (i) Pn′(Si) =Pp

n′(Si),∀i∈ {1,2, ...,k}, p∈
Ω(T,nd), (ii) all members of {pSi}p∈{a,b},i∈{1,..,k} are outcome propositions relative to
Vn′ , and (iii) Vn′(aSi) > Vn′(bSi),∀i ∈ {1,2, ...,k}. Say further that a decision theory,
D, respects Causal Dominance just in case, for all standard decision problems d =
⟨A ,T,n′,P,V ⟩ and plans b ∈ Ω(T,n), if there exists a ∈ Ω(T,n) such that a ▷d b,
then b /∈ D(d).13

What Causal Dominance requires is that if an agent judges that a particular plan a
will certainly lead to a better outcome than another plan b, given any cell of a partition
each of whose members is judged causally independent of a and b, then she cannot
rationally implement b. To see how EDT can contradict this principle, suppose again
that I am to play a Prisoner’s Dilemma with my similarly inclined friend. Once I am
in my causally isolated room, my decision to cooperate (C) or defect (D) has no causal
bearing on whether my friend will cooperate (c) or defect (d), i.e., PC(c) = PD(c). So,
given that this is a Prisoner’s Dilemma (i.e., V (Dc) > V (Cc) and V (Dd) > V (Cd)),
Causal Dominance forbids cooperation. It is easy enough to see, however, that if my
choice to cooperate is strong enough evidence of my friend’s choice to cooperate (i.e.,
if P(c|C)−P(c|D) is high enough) then EDT will recommend cooperating.14

In response to the challenge posed by such Newcomb problems,15 many philoso-
phers have sought refuge in Causal Decision Theory (CDT).16 To introduce this alter-
native, we first need to define the utility or efficacy value of a proposition.

13Our previous restriction to finite decision problems becomes key here. In infinite decision problems, it is
possible that every available plan might be causally dominated by another and hence it could be impossible to
have a decision theory that both always returns non-empty recommendations and satisfies causal dominance
in the infinite context. It is worth noting that even within the context finite decision problems, some have
recently objected to causal dominance principles of this sort without harboring any motivation to defend
EDT (e.g., see Spencer and Wells 2019 and Gallow 2020).

14Just how strong the evidence needs to be of course depends upon the precise desirabilities encoded by
V .

15Newcomb problems were first employed as an objection to EDT by Nozick 1969.
16CDT has taken many forms in the decision theoretic literature. Some of the most prominent are those

in Gibbard and Harper 1978, Skyrms 1980, Lewis 1981, Joyce 1999, and Pearl 2009. A central difference
amongst these variants concerns how they construe the nature of causal probabilities. For our purposes,
however, such differences are inconsequential.
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Definition 5. Let a family of causal probabilities, {PX}X∈A , and a desirability func-
tion, V , defined, respectively, on A and its non-null members be given. Let {O1,O2, ...,Ok}⊆
A be a partition of outcome propositions with respect to V . The utility or efficacy
value of Y ∈ A , U(Y ), is defined as: U(Y ) := ∑i PY (Oi)V (Oi).

Causal Decision Theory: If d = ⟨A ,T,n′,P,V ⟩, then
CDT (d) := {p ∈ Ω(T,n′)|Un′(p)≥Un′(p′),∀p′ ∈ Ω(T,n′)}.

CDT judges the practically best plans to be the ones that are U-maximal. According
to causalists then, rational choice consists in maximization of utility, understood as
efficacy value.

Applied to the Prisoner’s Dilemma, CDT delivers an unambiguous verdict in fa-
vor of defecting, provided that I really do take my choice to be causally irrelevant
to my compatriot’s decision, i.e. if PC(c) = P(c). Indeed, CDT will always re-
spect Causal Dominance. If a ▷d b, then there exists a causally independent partition
{S1, ...,Sk} ∈ Ad such that Vnd (aSi) > Vnd (bSi),∀i ∈ {1,2, ...,k}. But this implies that
Pnd (Si)Vnd (aSi)≥ Pnd (Si)Vnd (bSi),∀i ∈ {1,2, ...,k}, with the inequality being strict for
some i. Hence, ∑i Pnd (Si)Vnd (aSi)> ∑i Pnd (Si)Vnd (bSi). But given the causal indepen-
dence assumption, this means Und (a)>Und (b), so b /∈CDT (d).

CDT’s satisfaction of Causal Dominance appears to be a significant relative advan-
tage over EDT. Still, not all are convinced of the superiority of CDT’s recommendation
in Newcomb problems. Moreover, in a range of other decision problems, EDT seems to
yield more intuitive verdicts than CDT,17 resulting in an apparent dialectical stalemate.
Be that as it may, proponents of both CDT and EDT (as well as some third parties)
should at least agree to the following principle that I want to suggest as a final norma-
tive constraint that any plausible decision theory ought to satisfy. Specifically, just as
a decision theory ought to be independent and dynamically consistent across coherent
decision problems, so too it ought to be conservative:

Definition 6. A decision theory, D, is conservative just in case, for all decision prob-
lems d, if EDT (d) =CDT (d), then D(d) = EDT (d) =CDT (d).

Conservative decision theories are thus those that agree with EDT and CDT wherever
they coincide. Prima facie, this is a plausible requirement on a normative decision the-
ory. The cases in which EDT and CDT come apart are tricky ones in which intuitions
notoriously diverge. But if a particular plan is judged maximally choiceworthy, on both
evidentialist and causalist standards alike, then it seems safe to regard the plan as in fact
maximally choiceworthy. Note that both EDT and CDT are trivially conservative, as
well as independent. Unfortunately, neither is dynamically consistent across standard
decision problems.18

17See, for example, Egan 2007, Ahmed 2014a, and Spencer and Wells 2019. For causalist replies, see
Joyce 2012, Joyce 2018, Armendt 2019, Williamson 2021.

18A reviewer fairly points out that conservatism is not entirely without controversy as a constraint upon
rational choice theories. For example, it is violate by the family of rational choice theories that generalize
Barnett 2022’s graded ratifiability rule, including Wedgwood 2011, Gallow 2020, and Podgorski 2020. This
contravention of conservatism, however, strikes me as among the strongest objections to such approaches.
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5 Non-Causal Decision Theories Are Dynamically In-
consistent

One reason to find violations of Causal Dominance troubling is that they seem to lead
to dynamic inconsistency. This has already been argued in the specific case of EDT, but
it is true in general of theories that conflict with Causal Dominance.19 To prove this, I
will assume that independence and conservatism are requirements on any normatively
adequate decision theory.

Proposition 1. Every independent and conservative decision theory that fails to re-
spect Causal Dominance is dynamically inconsistent across the domain of standard
decision problems.

Proof. Suppose that D is an independent, conservative decision theory that fails to
respect Causal Dominance and is defined (at least) on the domain of standard de-
cision problems. Since D fails to respect Causal Dominance, there must be a stan-
dard decision problem, d = ⟨A ,T,n′,P,V ⟩, such that b ∈ D(d) but a ▷d b for some
a ∈ Ω(T,n′). By the definition of causal dominance, there must be some partition
{S1,S2, ...,Sk} ⊆ A such that (i) Pn′(Si) = Pp

n′(Si),∀i ∈ {1,2, ...,k}, p ∈ Ω(T,n′), (ii)
all members of {pSi}p∈{a,b},i∈{1,..,k} are outcome propositions, and (iii) Vn′(aSi) >
Vn′(bSi),∀i ∈ {1,2, ...,k}. Let {S1, ...,Sk} be such a partition. Let T ′ be the deci-
sion tree that consists of an initial natural node n0 whose k succeeding nodes, n1, ...,nk,
are the initial nodes of T (S1),T (S2), ...,T (Sk), respectively. Now consider a decision
problem d′ = ⟨A ,T ′,n0,{PX

n }n∈NT ,X∈A ∩S(n),{Vn}n∈NT ′ ⟩, such that PX
n0

= PX
n′ , for all

X ∈ A , and Vn0 =Vn′ . (Such a decision problem is standard given the assumed causal
independence of {S1, ...,Sk} from Ω(T,n0) according to {PX

n0
}X∈A .) We know that

Ω(T,n′) = Ω(T ′,n0), hence since D is independent, it must be that b ∈ D(d′). But
b(ni) = bSi /∈ D(d′

i), where d′
i is the continuant of di at ni, since D is conservative

and b(ni) /∈ EDT (d′
i) =CDT (d′

i). But d′ and d′
i are both standard decision problems.

Hence, D is dynamically inconsistent across the domain of standard decision prob-
lems.

Any decision theory then that sometimes recommends a strictly causally dominated
plan is liable to violate dynamic consistency in a pair of easily crafted standard deci-
sion problems. Intuitively, to achieve this result just move the unveiling of the relevant
causally independent partition to the start of the problem and watch the sequential inco-
herence unfold. Note that such a move is licit within the domain of standard decision
problems only given the assumed causal independence (lest we transgress No Back-
ward Causation), and so cannot, for example, be used to generate fallacious dynamic
consistency arguments on behalf of unrestricted dominance principles.

19See, for example, the arguments in Arntzenius 2008, Meacham 2010, and Rothfus 2020 all of which
build on the examples of Gibbard and Harper 1978, as well as the example in Wells 2018, which can be used
to similar effect.
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6 Causal Decision Theories Are Dynamically Inconsis-
tent

In light of the difficulties arising from violations of Causal Dominance, many have
turned to CDT as a safe haven amidst Newcombian troubles. Unfortunately (and per-
haps more surprisingly), CDT is also dynamically inconsistent. The case for this has
been convincingly laid out by Arif Ahmed via his Psycho-Insurance problem, a se-
quential variant of Andy Egan’s famous Psycho-Button case.20

The problem comes in two stages. In the first, a Newcombian predictor offers you a
choice between pressing a button and refraining from pressing it. If she predicted that
you would press the button, then she has set things up so that pressing the button will
cause $1 to be debited from your bank account. If she predicted that you would not
press the button, then she has set things up so that pressing the button will cause $1 to
be credited to your account. (This is Ahmed’s sanitized version of Egan’s case.) Let P
be the proposition that you press the button. The options you face here are then P and
P. Let K be the proposition that the predictor had predicted you would press while K
is the proposition that she predicted the opposite. Assume that desirability and dollar
payoffs coincide on propositions strong enough to fix the latter, i.e. all you care about
is money and you value it linearly.

You take the predictor to be fairly reliable so let’s fix that your credence in K given
P and in ¬K given ¬P are each greater than .75 (just say .9 for concreteness). After
you have made your decision with regard to pressing the button, you will be offered
an opportunity to bet on whether the predictor correctly predicted your choice. The
bet will pay $0.50 if the predictor was correct and cost you $1.50 otherwise. Let B
be the proposition that you bet. We assume that you judge neither P nor B to have
any causal influence upon K. In our framework, this decision problem is captured by
PI = ⟨A ,T,n0,{PX

n }n∈NT ,X∈A ∩S(n),{Vn}n∈NT ⟩, where:

• A =P(W ), where W is the set of all state-descriptions constructed from P,K,B.

• T is the decision tree depicted in Figure 1.

• n0 is T ’s initial node.

• {PX
n }n∈NT ,X∈A ∩S(n) is a family of probability measures satisfying: (i) Pn0(K|P)=

Pn0(¬K|¬P) = .9 and (ii) PPB
n (K) = PPB

n (K) = PPB
n (K) = PPB

n (K) = Pn(K),∀n ∈
NT at which the relevant probabilities are defined.

• {Vn}n∈NT is a family of desirability functions each of whose payoffs on atomic
elements of A , where defined, are as specified in Table 1.

Since P.B ▷PI PB and PB ▷PI PB, CDT’s satisfaction of Causal Dominance im-
plies that PB,PB /∈ CDT (PI). So, either PB or P.B must be in CDT (PI). Suppose

20Egan 2007. Ahmed notes that cases of similar structure have appeared in the literature before, for
example, in Gibbard 1992. For other sequential choice problems that could be used to make a similar point,
see Oestherheld and Conitzer 2021 and Spencer 2021. For one critique of some of the conclusions drawn
from these examples together with dynamic consistency, see Joyce 2016.
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n0

n1 n2

P P

z1 z2 z3 z4

B B B B

Figure 1: T 1, the Psycho-Insurance Problem. S(n0)= T , S(n1)=P, S(n2)=P, S(z1)=
PB, S(z2) = PB, S(z3) = PB, S(z4) = P.B.

K K
PB -0.5 -0.5
PB -1 1
PB -1.5 .5
P.B 0 0

Table 1: The Psycho-Insurance Problem in Normal Form

PB ∈CDT (PI). (A similar argument will apply if P.B ∈CDT (PI).) Now consider the
continuant of PI at node n1, PI1. At this point, PB(n1) = B /∈ CDT (PI1). Hence, we
have a violation of dynamic consistency on the part of CDT.

It should be clear from the preceding argument that we can use Ahmed’s example
to craft a general argument that any conservative decision theory that respects Causal
Dominance will in fact be dynamically inconsistent.

Proposition 2. Every conservative decision theory that respects Causal Dominance is
dynamically inconsistent across the domain of standard decision problems.

Proof. Let D be a conservative decision theory defined (at least) on all standard deci-
sion problems that respects Causal Dominance. Consider the standard decision prob-
lem PI. D must be defined on PI in order to qualify as dynamically consistent across
the domain of standard decision problems, so suppose that it is. By Causal Dominance
and the fact that D must return a non-empty set on every input on which it is defined,
we know that (i) PB ∈ D(PI) or (ii) P.B ∈ D(PI). Now consider the standard decision
problems PI1 and PI2 that are the continuants of PI at nodes n1 and n2, respectively.
We know that EDT (PI1) = CDT (PI1) and EDT (PI2) = CDT (PI2), so conservatism
requires that D(PI1) = CDT (PI1) and D(PI2) = CDT (PI2). But, since PB(n1) = B /∈
CDT (PI1) and P.B(n2) = B /∈ CDT (PI2), it must be that PB(n1) = B /∈ D(PI1) and
P.B(n2) = B /∈ D(PI2). So, whichever of (i) and (ii) is true, D is dynamically inconsis-
tent on the domain of standard decision problems.

12



7 Backward Autonomy
Stitching Propositions 1 and 2 together yields the negative result:

Proposition 3. No independent, conservative decision theory is dynamically consistent
across the domain of standard decision problems.

If dynamic consistency is a genuine constraint upon the adequacy of any normative
decision theory, then we are left with few options. We could reject the rational neces-
sity of either independence or conservatism, but each of these principles is eminently
plausible. Assuming that we refuse to take this route, we are left with one avenue
for preserving the possibility of a normatively adequate decision theory: restricting in
some way the domain of admissible decision problems. This is the route I will explore
here.

If we wish to charge the decision problems considered above with incoherence,
where precisely is it to be located? The decision problems considered thus far have
all been standard and so there is clearly no standard probabilistic or desirabilistic in-
coherence at which to lay the blame. There are, it seems, very few plausible ways to
go about further restricting the domain of standard decision problems in the name of
coherence. One aspect of the problems highlighted above that might be questioned,
however, concerns their unrestricted adherence to conditionalization as an update rule
for revising credences and desirabilities in response to new information. Condition-
alization is unobjectionable when applied to cases in which an agent passively learns
the truth of a proposition identified in the algebra of events she has beliefs over. That
is, in the context of dynamic choice, pursuant to natural nodes a rational agent ought
to update her credences and desirabilities by conditionalization. However, condition-
alization might be a more questionable assumption when applied to cases in which the
new information an agent learns is brought about by her own willful decision to bring
it about. That is, it might be questionable whether conditionalization properly charac-
terizes the sort of learning that takes place pursuant to choice nodes in dynamic choice
problems.

A number of philosophers have independently challenged this assumption on grounds
different than those that concern us in this essay. John Cantwell, for example, has sug-
gested that the problem of decision instability exemplified in one-shot decision prob-
lems like Gibbard and Harper’s Death in Damascus or Egan’s Psycho-Button provides
pragmatic motivation to adopt a bifurcated update rule requiring one to update by con-
ditionalization when learning states and by imaging (i.e. employing causal probabili-
ties) when learning acts.21 Melissa Fusco arrives at similar conclusions from consid-
erations of epistemic time bias.22 This idea also seems to share something in common
with the way some causal decision theorists working in the tradition of graphical causal
models often talk. On one way of reading such authors, a rational decision qualifies as
an intervention that severs any grounds for correlation between the act decided upon
and temporally antecedent states of affairs. Hence, according to this approach, while

21Cantwell 2010.
22Fusco 2018.
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learning a state goes by conditionalization, learning an act goes by an alternative mode
of belief revision appropriate to causal intervention.23

In my view, this perspective merits deeper consideration than it has thus far re-
ceived.24 For our purposes, the obvious question to ask is whether there are any plau-
sible decision theories that are dynamically consistent across the domain of almost
standard decision problems that replace Probabilisitic Conditionalization with a suit-
ably bifurcated updating rule. However, I raise this proposal and its attendant questions
only to set them aside. I wish instead to explore two different explications of the class
of coherent decision problems that, while leaving probabilistic conditionalization intact
as sacrosanct, each allow space for the existence of plausible, dynamically consistent
decision theories. Each of these proposals suggests a modification of the admissible
range of causal credence functions a rational agent may coherently adopt at a partic-
ular point in time, rather than a modification of the admissible range of functional
relationships that may obtain between an agent’s credence functions at disparate times.
The first will be seen to render EDT dynamically consistent, while the second secures
the same verdict for CDT.

Beginning with the first proposal, it is natural to describe the predicament of plausi-
ble non-causal decision theories, like EDT, vis-a-vis dynamic consistency in something
like the following way. In some decision problems where I anticipate learning which
cell of a partition is true and then making a choice in light of that information, I might
view a particular disjunctive plan as ex ante optimal but not view its various contin-
uations as optimal after my learning experience. In the case of EDT, this stems from
the fact that the disjunctive plan might provide me maximally good news in the form
of indicating that one or more of its disjuncts are likely to be false even while I dis-
prefer each of its continuations (i.e., indivudual disjuncts) to another possible plan’s
continuations. What seems to be happening here then is that by taking information
about my future acts as evidence for prior learning events, I open the door to dynamic
inconsistency.

My proposal on behalf of the evidentialist committed to dynamic consistency then
is to rule out such evidential judgments as incoherent. In particular, I suggest that
the decision theorist so inclined restrict the range of coherent decision problems down
from the standard to what I shall call the backward autonomous.

Definition 7. A decision problem d = ⟨A ,T,n′,{PX
n }n∈NT ,X∈A ∩S(n),{Vn}n∈NT ⟩ is back-

ward autonomous just in case (i) it is standard and (ii) for any natural node n ∈ NT ,
any ni ∈ N+(n), and any plan p ∈ Ω(T,n), Pn(S(ni)|p) = Pn(S(ni)).

The corresponding partial explication of coherence now strengthens from standard
Bayesian coherence to:

23Some causal decision theorists view treating decisions as interventions as merely a useful fiction in
the context of static decision making and hence do not view this as providing any rival updating rule to
conditionalization. Others, however, do seem to intend to be writing more than fiction. See Hitchcock 2016
and the discussion in Stern 2018.

24Johan Gustafsson’s recent talk, “Causal Decision Theory and the Dutch-Book Argument for Condition-
ing", delivered at the Workshop on Issues in Dynamic Decision Theory held at University of Konstanz in
July 2023 offered a promising start to such deeper consideration.
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Backward Autonomy: All coherent decision problems are backward au-
tonomous.

The definition of backward autonomous decision problems allows us to establish not
only the existence of plausible (i.e., independent and conservative) decision theories
that satisfy dynamic consistency across the range of backward autonomous decision
problems, but in fact the dynamic consistency of EDT itself within this scope.

Proposition 4. EDT is dynamically consistent across the domain of backward au-
tonomous decision problems.

Proof. Let da = ⟨A ,T,na,{PX
n }n∈NT ,X∈A ∩S(n),{Vn}n∈NT ⟩ be a backward autonomous

decision problem and let db = ⟨A ,T,nb,{PX
n }n∈NT ,X∈A ∩S(n),{Vn}n∈NT ⟩ be a contin-

uant of da such that nb ∈ N+(na). Suppose p ∈ EDT (da) and p(nb) is defined. To
show that EDT is dynamically consistent on the domain of backward autonomous de-
cision problems, it suffices to verify that p(nb) ∈ EDT (db), since the continuant of any
backward autonomous decision problem is also backward autonomous.

Case 1: Suppose na is a choice node.

This case is handled by the general proof in Rothfus 2020 that EDT’s recommen-
dations are always invariant pursuant to choice nodes.

Case 2: Suppose na is a natural node. Then p has the form ∧i[S(ni)→ p(ni)], where
the ni’s are the possible successors to na. Note that this is equivalent to ∨iS(ni)p(ni).
By definition of EDT:

Vna(p)≥Vna(p′),∀p′ ∈ Ω(T,na).

So:

Vna(∨iS(ni)p(ni))≥Vna(∨iS(ni)p′(ni)),∀p′ ∈ Ω(T,na).

Applying the desirability axiom across the partition {S(ni)}ni∈N+(na):

∑ j Pna(S j|∨i S(ni)p(ni))Vna(S(n j)∨i S(ni)p(ni))≥∑ j Pna(S j|∨i S(ni)p′(ni))Vna(S(n j)∨i
S(ni)p′(ni)), ∀p′ ∈ Ω(T,na).

Since da is backwards autonomous:

∑ j Pna(S j)Vna(S(n j)∨i S(ni)p(ni))≥∑ j Pna(S j)Vna(S(n j)∨i S(ni)p′(ni)),∀p′ ∈Ω(T,na).

Which is equivalent to:

∑ j Pna(S j)Vna(S(n j)p(n j))≥ ∑ j Pna(S j)Vna(S(n j)p′(n j)),∀p′ ∈ Ω(T,na).

By Desirabilistic Conditionalization, this is equivalent to:

∑ j Pna(S j)Vn j(p(n j))≥ ∑ j Pna(S j)Vn j(p′(n j)),∀p′ ∈ Ω(T,na).

But then it must be that, for all n j ∈ N+(na):

Vn j(p(n j))≥Vn j(p′(n j)),∀p′ ∈ Ω(T,na).
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Since, if this failed to hold, i.e., if there were an n j such that Vn j(p′(n j))>Vn j(p(n j))
for some p′ ∈ Ω(T,na) we could, contrary to supposition, form a new plan exactly sim-
ilar to p except that it agrees with p′ pursuant to n j, which would be guaranteed to have
greater ex ante desirability than p. Hence, no such plan exists, and the proof is com-
plete.

Embracing Backward Autonomy as an epistemic coherence condition thus allows
the proponent of EDT to sidestep the charge of dynamic inconsistency. Having secured
such a result for EDT is little comfort, however, for those convinced of the rational ne-
cessity of Causal Dominance. Clearly, Backward Autonomy, whatever its plausibility
as an epistemic coherence condition, is no remedy for the dynamic choice woes of CDT
and other decision theories that respect Causal Dominance. Both stages of Ahmed’s
Psycho-Insurance, for example, are backward autonomous decision problems (trivially
so, since the relevant decision tree includes no natural nodes), yet they jointly suffice to
establish the dynamic inconsistency of any conservative decision theory that respects
Causal Dominance. Where then may a causalist turn?

8 Full Autonomy
In order to secure dynamic consistency for causalists, restricting beliefs in prior learn-
ing events conditional upon information about posterior acts is clearly insufficient.
Stronger medicine is needed. In particular, cases like Psycho-Insurance show we must
restrict at least some beliefs in causally prior states conditional upon information about
posterior acts, regardless of whether the causally prior states are also epsitemically
prior. The simplest and most natural suggestion for how to accomplish this is sim-
ply to insist that coherence requires full autonomy, where full autonomy amounts to
collapsing conditional and causal credence in cases where the conditioning events are
logically available plans. That is, we could insist that the domain of coherent decision
problems is a subset of the domain of fully autonomous decision problems.

Definition 8. A decision problem d = ⟨A ,T,n′,{PX
n }n∈NT ,X∈A ∩S(n),{Vn}n∈NT ⟩ is fully

autonomous just in case (i) it is standard and (ii) for any proposition X ∈A , any node
n ∈ NT , and any plan p ∈ Ω(T,n), Pn(X |p) = Pp

n (X).

The corresponding explication of coherence now becomes:

Full Autonomy: All coherent decision problems are fully autonomous.

Note that Full Autonomy is indeed a stronger principle than Backward Autonomy in
the sense that every fully autonomous decision problem is also backward autonomous,
though not vice-versa. Given No Backward Causation as a constraint on standard de-
cision problems, if n is a natural node, ni ∈ N+(n), and p ∈ Ω(T,n) then Pp

n (S(ni)) =
Pn(S(ni)). But full autonomy requires, Pp

n (S(ni)) = Pn(S(ni)|p). Thus, Pn(S(ni)|p) =
Pn(S(ni)), in line with backward autonomy. On the other hand, Psycho-Insurance
shows that not every backward autonomous problem is fully autonomous.
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It is possible to show that Full Autonomy suffices to prove the dynamic consis-
tency of CDT across the domain of coherent decision problems, though the same result
would hold for EDT and any other conservative decision theory, since Full Autonomy
is strong enough to render all such theories equivalent in the context of coherent deci-
sion problems.

Proposition 5. CDT is dynamically consistent across the domain of fully autonomous
decision problems.

Proof. Let da = ⟨A ,T,na,{PX
n }n∈NT ,X∈A ∩S(n),{Vn}n∈NT ⟩ be a fully autonomous deci-

sion problem and let db = ⟨A ,T,nb,{PX
n }n∈NT ,X∈A ∩S(n),{Vn}n∈NT ⟩ be an immediate

continuant of da. Suppose p ∈CDT (da) and p(nb) is defined. To show that CDT is dy-
namically consistent on the domain of fully autonomous decision problems, it suffices
to verify that p(nb) ∈CDT (db), since the continuant of any fully autonomous decision
problem is also fully autonomous. (For readability, I suppress subscripts referencing
n0.)

Case 1: Suppose na is a choice node.

We know that:

Una(p)≥Una(p
′
),∀p

′ ∈ Ω(T,na).

Computing utility relative to a finite set of outcome propositions O:

∑o∈O Pp
na(o)Vna(o)≥ ∑o∈O Pp′

na (o)Vna(o),∀p′ ∈ Ω(T,na).

By the full autonomy of da:

∑o∈O Pna(o|p)Vna(o)≥ ∑o∈O Pna(o|p′)Vna(o),∀p′ ∈ Ω(T,na).

But our definition of plans/continuations guarantees that plans are identical with
their continuations pursuant to choice nodes:

∑o∈O Pna(o|p(nb))Vna(o)≥ ∑o∈O Pna(o|p′(nb))Vna(o),∀p′ ∈ Ω(T,na),

where continuation at nb is defined.

Which is equivalent to:

∑o∈O Pna(o|p(nb)S(nb))Vna(o)≥ ∑o∈O Pna(o|p′(nb)S(nb))Vna(o),∀p′ ∈ Ω(T,na),

where continuation at nb is defined.

Invoking Conditionalization:

∑o∈O:Pnb (o)>0 Pnb(o|p(nb))Vnb(o)≥∑o∈O:Pnb (o)>0 Pnb(o|p′(nb))Vnb(o),∀p′(nb)∈Ω(T,nb).

A second application of full autonomy guarantees:

∑o∈O:Pnb (o)>0 Pp(nb)
nb (o)Vnb(o)≥∑o∈O:Pnb (o)>0 Pp′(nb)

nb (o|)Vnb(o),∀p′(nb)∈Ω(T,nb).

By definition of U:

Unb(p(nb))≥Unb(p′(nb)),∀p′(nb) ∈ Ω(T,nb).
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Thus, p(nb) ∈CDT (db).

Case 2: Suppose na is a natural node. Then p has the form ∧i[S(ni)→ p(ni)], where
the ni’s are the possible successors to na. Note that this is equivalent to ∨iS(ni)p(ni).
So, computing utility relative to a partition of outcome propositions O, we have:

∑o∈ O P(∨iS(ni)p(ni))
na (o)Vna(o)≥ ∑o∈ O P(∨iS(ni)p(ni))

na (o)Vna(o),∀p′ ∈ Ω(T,na).

By the full autonomy of da:

∑o∈O Pna(o|[∨iS(ni)p(ni)])Vna(o)≥∑o∈O Pna(o|[∨iS(ni)p(ni)])Vna(o),∀p′ ∈Ω(T,na).

Which is equivalent, by the Law of Total Probability, to:

∑o∈O ∑i[Pna(S(ni)p(ni)|∨i [S(ni)p(ni)])]Pna(o|S(ni)p(ni))Vna(o)≥∑o∈O ∑i[Pna(S(ni)p′(ni)|∨i
[S(ni)p′(ni)])]Pna(o|S(ni)p′(ni))Vna(o),∀p′ ∈ Ω(T,na).

Switching the order of the finite sums and abbreviating the plan:

∑i ∑o∈O[Pna(S(ni)p(ni)|p)]Pna(o|S(ni)p(ni))Vna(o)≥∑i ∑o∈O[Pna(S(ni)p′(ni)|p′)]Pna(o|S(ni)p′(ni))Vna(o),
∀p′ ∈ Ω(T,na).

Invoking Conditionalization:

∑i ∑o∈O:Pnb (o)>0[Pna(S(ni)p(ni)|p)]Pni(o|p(ni))Vni(o)≥∑i ∑o∈O:Pnb (o)>0[Pna(S(ni)p′(ni)|p′)]Pni(o|p′(ni))Vni(o),
∀p′ ∈ Ω(T,na).

Which is equivalent, by the full autonomy of da to:

∑i ∑o∈O:Pnb (o)>0[Pna(S(ni)p(ni)|p)]Pp(ni)
ni (o)Vni(o)≥∑i ∑o∈O:Pnb (o)>0[Pna(S(ni)p′(ni)|p′)]Pp′(ni)

ni (o|)Vni(o),
∀p′ ∈ Ω(T,na).

Pulling the first term out of the inner sum:

∑i Pna(S(ni)p(ni)|p)∑o∈O:Pnb (o)>0 Pp(ni)
ni (o)Vni(o)≥∑i Pna(S(ni)p′(ni)|p′)∑o∈O:Pnb (o)>0 Pp′(ni)

ni (o|)Vni(o),
∀p′ ∈ Ω(T,na).

Which is equivalent, by definition of U , to:

∑i Pna(S(ni)p(ni)|p)Uni(p(ni))≥ ∑i Pna(S(ni)p′(ni)|p′)Uni(p′(ni)),∀p′ ∈ Ω(T,na).

Which is equivalent to:

∑i Pna(S(ni)|p)Uni(p(ni))≥ ∑i Pna(S(ni)|p′)Uni(p′(ni)),∀p′ ∈ Ω(T,na).

Which is equivalent, since da is fully autonomous, to:

∑i Pp
na(S(ni))Uni(p(ni))≥ ∑i Pp′

na (S(ni))Uni(p′(ni)),∀p′ ∈ Ω(T,na).

Which is equivalent, given No Backward Causation, to:

∑i Pna(S(ni))Uni(p(ni))≥ ∑i Pna(S(ni))Uni(p′(ni)),∀p′ ∈ Ω(T,na).

But then:
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Uni(p(ni))≥U(ni)(p′(ni)),∀p′(ni) ∈ Ω(T,ni),

This line follows by the same reasoning employed at the end of the proof of Propo-
sition 4. Namely, if this failed to hold, i.e. if for some i, Uni(p′(ni)) > Uni(p(ni))
for some p′ ∈ Ω(T,na) we could, contrary to supposition, form a new plan exactly
similar to p except that it agrees with p′ pursuant to ni, which would be guaranteed
to have greater ex ante utility than p. Hence, no such plan exists. So, in particular,
p(nb) ∈CDT (db).

Proponents of CDT thus also have an escape route by which to flee the negative
verdict of Proposition 3, albeit a more demanding one than that afforded by Backward
Autonomy to proponents of EDT. That is, the causalist can refute the charge of prob-
lematic dynamic inconsistencies by embracing Full Autonomy.

9 Conclusion
The happy consequences of Backward Autonomy and Full Autonomy notwithstanding,
these are very strong principles that many a decision theorist will no doubt be inclined
to resist as strict conditions of epistemic coherence. Full Autonomy, for example, es-
sentially precludes ideally rational agents from ever facing Newcomb problems or from
holding their own choices to be potentially correlated with causally irrelevant states of
the world, e.g., the behavior of a physically remote twin. This may be a bridge too far
for some, and I can’t say I lack all sympathy for such skeptics. Still, the retreat from
Full Autonomy is an unpleasant one. Backward Autonomy is logically weaker and
does allow for the coherence of Newcomb problems, but reaping its benefits vis-a-vis
dynamic consistency requires rejecting CDT in favor of EDT, which many theorists
will be reluctant to do. And, in any case, it shares much of the same radical spirit
as Full Autonomy anyway. Further, in light of Proposition 3, without some sort of
restriction on coherence beyond the standard canons of Bayesianism, alternative deci-
sion theories also provide no safe harbor to sail to, provided we accept the eminently
plausible constraints of independence and conservatism.

The rational choice theorist’s dilemma thus likely comes down to either embracing
a radical epistemic principle à la Full or Backward Autonomy or else abandoning dy-
namic consistency as a constraint on normative decision theories.25 Given the powerful
appeal of dynamic consistency, it is worth considering whether autonomy-like princi-
ples are really so implausible as characterizations of ideal rationality. A typical human
agent will no doubt violate both Full and Backward Autonomy, but then again typi-
cal human agents violate all the standard rationality postulates of Bayesian decision
theories. Might there be principled epistemic reasons (beyond the brute motivation to
avoid dynamic inconsistency) why an agent more collected and more reflective than
we would tend to satisfy either Full or Backward Autonomy?

25A possible third possibility, also unpleasant, would be to accept dynamic consistency, reject autonomy,
and simply deny that there is any fully normatively adequate decision theory at all, a conclusion perhaps also
suggested by the impossibility results of Briggs 2010.
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One route to motivating such a view might come via something like Ellery Eells’ fa-
mous tickle defense of EDT.26 According to Eells, a sufficient degree of self-awareness
ought to screen off perceived correlations between an agent’s decisions and causally
irrelevant states of the world. So, for example, while my behavior might provide evi-
dence regarding that of my causally isolated twin by way of revealing something about
our shared action-guiding attitudes (e.g. beliefs and desires), once these decision inputs
are fixed the evidential connection between our behaviors may be broken. Eells held
that such self-awareness is partially constitutive of practical rationality since an aware-
ness of one’s own probabilities and utilities is crucial to the first-person application of
decision theory. If correct, this observation would obviate the need for CDT, at least in
the case of ideally rational agents, since its verdicts (as well as those of any other con-
servative decision theory for that matter) would always agree with those of EDT. Eells
seems to be getting at something close to Full Autonomy here by an entirely different
route.

We might also instead view Full or Backward Autonomy as a requirement char-
acterizing the ideal endpoint of rational deliberation. This thought seems to be in
line with Eells’ mature formulation of his defense of EDT in terms of deliberational
metatickles.27 On this view, an agent might reasonably start out deliberation with non-
autonomous credences, but as she deliberates she goes through a process that includes
a growing awareness of her own attitudes and dispositions that ultimately screens her
choices off from all but causally downstream states of affairs. An exact dynamics that
conforms to this desideratum and its implication for contexts of sequential choice are
well worth investigating.28

While hopefully suggestive, such remarks are far from decisive. One significant
concern to raise about the prospects for deliberational metatickles to guarantee conver-
gence of an ideal agent’s credences to a (fully or backward) autonomous limit, is that
the Eell’s story may not really justify autonomy in cases of practical indifference where
a rational agent’s decision is not deterministically fixed by her beliefs and desires. For
example, if I am indifferent between A and B perhaps my eventual choice of A over B
can tell me something about past states of the world via indicating what tie-breaking
procedure I used, which may in turn be correlated with, e.g., a friend’s tie-breaking
procedure, a predictor’s prediction, etc. So caution is warranted in trying to use any
sort of Eellsian story to justify an identification of coherent decision problems with the
fully autonomous. Still, I’m not convinced that no such story can be told, though to tell
it would at least require an involved and likely controversial analysis of the nature of
rational choice under indifference.29

26Eells 1982/2016.
27Eells 1984
28Note that such a dynamic reading of Full Autonomy may, unlike a static reading, leave room for practical

divergence between CDT and EDT if an agent’s choice of decision theory impacts which fully autonomous
credal state her deliberation terminates in. For more on deliberational dynamics, albeit not versions that
hope to offer convergence to Full Autonomy, see Skyrms 1990, Arntzenius 2008, Joyce 2012, and Lauro and
Huttegger 2020. See Huttegger 2023 for an intriguing discussion of an alternative approach to deliberational
dynamics which may offer better prospects, in some cases, for motivating the convergence of rational agents’
credences toward fully autonomous equilibria.

29A reviewer has insightfully noted that cases of so-called ‘exotic choice’ in which an agent finds herself in
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Whether independent and more direct support can be found for either Full or Back-
ward Autonomy, this much is clear: Causalist and evidentialists will be hard pressed to
defend the dynamic consistency of their theories without embracing something close
to these principles. To the extent that we are attracted to dynamic consistency, we are
then lead to the surprising and radical consequence that, in so far as we live up to the
ideals of rationality, the evidential significance of our plans is sharply constrained, in
one way or another, by their causal significance.

Data Availability
I do not analyse or generate any data sets because my work proceeds within a theoreti-
cal approach.
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