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ABSTRACT OF THE DISSERTATION

The Logic of Planning

By

Gerard Joseph Rothfus

Doctor of Philosophy in Philosophy
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Professor Simon Huttegger, Chair

Over the past 40 years, decision theorists have produced an impressive body of litera-

ture employing dynamic choice arguments to defend the standard principles of Bayesian

decision theory, with Peter Hammond’s work serving as the locus classicus. However,

examination of the import of these arguments has largely been restricted to the context

of Savage-style decision theories that posit a sharp distinction between acts, states, and

outcomes, while the more general framework developed in Richard Jeffrey’s Logic of Deci-

sion has remained mostly neglected. This is remarkable given both the widely recognized

appeal of dynamic choice arguments and the broad popularity that Jeffrey’s framework

enjoys among philosophical decision theorists. My dissertation aims to remedy this situ-

ation by extracting and defending what I take to be the core insights of dynamic choice

arguments and exploring their significance in the context of Jeffrey-style decision theories.
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Chapter 1

Planning and the Norms of Rational

Choice

Dynamic choice arguments have played a significant role in various debates

regarding the foundations of normative decision theory. Despite their widely

granted intuitive appeal, the merit of these arguments remains a matter of con-

troversy among philosophers. Hence, this opening chapter to my dissertation

sketches a philosophical defense of a rationality principle that can undergird

many dynamic choice arguments. This principle, Dynamic Optimality, posits

that a rational agents’ own attitudes never preclude her from implementing ex

ante optimal plans in settings of sequential choice. In the context of Savage-

style decision theories, this principle is equivalent to one that excludes rational

agents from the possibility of suffering sure loss in finite dynamic decision

problems, given a richness condition on the consequence domain. However,

it is more versatile in that it can also be applied to decision models like Jef-

frey’s that dispense with the notion of ultimate consequences and to infinitary

settings that render the avoidance of sure loss impossible. This chapter also

1



serves an an introduction to the basic notation and principles of dynamic choice

theory that will be employed and amended throughout subsequent chapters.

1.1 Introduction

Diachronic tragedy occurs when an agent implements a sequence of decisions over time

that is forseeably to her own disadvantage.1 Some decision theorists hold that misfortune

of this sort is a fate peculiar to the irrational. Agents who inevitably find themselves

worse off as a result of their own choices must be guilty of violating one or another of

the canons of rationality. This line of thought supplies rational choice theorists with an

attractive method for fixing (some of) those canons: figure out which attitudes, update

policies, choice rules, etc. lead to diachronic tragedy and rule them out as irrational. This

strategy has yielded a remarkable defense of orthodox Bayesian decision theory.

While notable for their theatrical value, arguments from diachronic tragedy form but one

family in a cluster of argumentative strategies that exploit the sequential choice setting

to bolster Bayesianism. Value of knowledge arguments form another such family, with

their key premise positing that rational agents never opt to deliberately avoid the receipt

of cost-free information prior to making decisions.2 Yet another class of arguments within

this cluster is framed in terms of dynamic consistency: rational agents are able to form

coherent plans and stick to them.3 No doubt the most rigorous derivation of standard

decision theory from dynamic choice norms is found in the work of Peter Hammond,

whose argument turns on a formal analogue of the seemingly innocent claim that rational

1This term of art is due to [39]. See also [40].
2[94], [95], [1], [81], [43].
3[22], [60], [37].
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behavior across time is explicable in terms of its (anticipated) consequences.4

Many decision theorists maintain that dynamic choice arguments like these constitute

the best defense of Bayesianism on offer. Allan Gibbard, for example, has claimed that

Peter Hammond’s dynamic choice arguments offer “the clearest case that departing from

the strictures of classical decision theory is incoherent”.5 And Peter Wakker maintains

that these arguments “provide the most convincing foundation for Bayesianism presently

available.”6 Even critics of standard rational choice theories have conceded that dynamic

choice arguments are among the most promising attempts to defend them. For example,

in a paper arguing against the separability assumptions made by expected utility the-

orists, Johanna Thoma writes “I take the best instrumentalist case that has been made,

most notably by Hammond (1988), in favour of separability to consist in an appeal to how

agents with non-separable preferences choose in some dynamic choice problems.”7

Nevertheless, dynamic choice arguments for Bayesianism have been forcefully challenged

by a number of recent philosophers. On one hand, the partisans of time-slice rationality

tell us that diachronic tragedy and other cross temporal ills offer no sign of rational de-

fect in the agents that suffer them since such agents need never act suboptimally at any

given time taken in isolation.8 On the other hand, proponents of resolute choice theory

contend that, while susceptibility to diachronic tragedy is indeed a mark of irrationality,

the separability assumptions needed to derive Bayesianism from this concession are un-

warranted.9 Cutting between these two perspectives, others have argued that there is an

4[36].
5[31], p. 32.
6[96], p. 3.
7[91].
8[40] for a clear defense of this line.
9[60], [57], [29].
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internal tension hidden within the assumptions employed by dynamic choice arguments.10

The ingenuity of these critics notwithstanding, diachronic tragedy arguments and their

kin continue to impress me. This chapter attempts to explain why. In doing so, it will set

the stage for subsequent chapters exploring the significance of dynamic choice norms in

the context of Jeffrey’s decision theory and its causalist variants.11 This first chapter, how-

ever, will restrict attention to Savage’s decision-theoretic framework,12 the setting within

which dynamic choice arguments have most often been debated. Doing so will allow us

to engage most directly with the dynamic choice literature and to answer objections to

dynamic choice norms in the context of the framework within which they were first pro-

posed. The principles defended here will then be transferable (with slight amendation) to

the context of Jeffrey-style theories, where they will be seen to yield rich consequences.

My basic strategy will be to argue that an adequate understanding of normative decision

theory as a theory of instrumental rationality can provide sufficient motivation for each

of the principles that undergird diachronic tragedy and related arguments. The charge

of internal tension amongst these principles is unfounded, I contend, given the account

of decision theory’s aims that I sketch below. According to this account, decision theory

evaluates an agent’s attitudes towards uncertain prospects by judging how effectively the

behaviors licensed by these attitudes fare against an assumed standard of basic values

regarding outcomes. Allowing that behavior may be understood dynamically, this liberal

test can justify conclusions as strong as the central axioms of Savage’s decision theory.

This is part of the attraction of dynamic choice arguments. Once we appreciate that an

agent’s execution of cross-temporal plans constitutes a form of behavior relative to which

10[18], [19], [91].
11[44].
12[72].
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her instrumental rationality may be assessed, the norms of rational choice emerge from

remarkably thin assumptions.

To argue these points, it will be helpful to have a concrete example of a diachronic tragedy

argument fixed in mind. We may recruit for this purpose a simple sequential choice argu-

ment for the conclusion that rational preferences must conform to the Sure-Thing Principle

(STP) in the context of Savage’s framework. This argument, which is well known and

due in spirit to Howard Raiffa,13 will suffice to frame our subsequent consideration of the

general merits of dynamic choice arguments.

Before we examine this argument, however, both the promised sketch of decision theory’s

aims and some explication of Savage’s framework are in order. §2-§4 of the paper will

attend to this. In §5, I lay out the informal diachronic tragedy argument against violations

of the STP. In (§6), I precisify the preceding discussion by introducing the formal machinery

of dynamic choice theory. This will allow us to analyze more closely the principles that

feature in dynamic choice arguments and to motivate a broad sequential choice norm

that I dub Dynamic Optimality, which will serve as the key rationality postulate employed

throughout this dissertation (§7). I then turn to rebutting some of the more prominent

objections leveled by philosophers against the principles defended here (§8) and conclude

with a brief sketch of things to come in succeeding chapters (§9).

13[70]. Raiffa credits an early form of the argument to Robert Schlaifer. An even earlier version of a related
argument first appeared in [59].
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1.2 Instrumental Rationality

Normative decision theorists aim to characterize rational agents. The sort of rationality

that captures their concern is practical rather than epistemic: a rational agent is one that

performs well in practical tasks. Any measure of an agent’s performance in this sense

naturally assumes a set of ends that supply the standard by which an agent’s successes

and failures may be assessed. Whether practical rationality concerns the fixing of such

ends or only the selection of means taken in light of them is, of course, a controversial

matter. Some philosophers (Humeans) maintain that an agent’s adoption of ends is an

entirely arational affair and that practical rationality is exclusively a matter of instrumental

rationality, where an instrumentally rational agent is one that performs well in practical

tasks relative to the standard fixed by her own ends (whatever they may be). Others hold

to a thicker conception of practical rationality on which an agent can be irrational for

adopting the wrong ends. Weighty as these questions are in themselves, they are of little

consequence to the decision theorist. The aspect of practical rationality that the decision

theorist wishes to explicate is simply its instrumental dimension. The scrutinizing of an

agent’s ends, along with an assessment of the propriety of doing so, is left to the moral

philosopher.

A rational agent, for our purposes then, is an agent that performs well in practical tasks, as

judged by the standard of her own ends. To say that an agent is (instrumentally) irrational

is to characterize her choice dispositions and/or the attitudes that give rise to them as

ineffective at realizing the agent’s own ends. For example, consider a simple agent14 who

buys a bet on some proposition p for $x while simultaneously selling an equivalent bet

on p for $y, where x > y. This agent is guaranteed a monetary loss of $x − y, regardless

14I borrow the term ‘simple agent’ from David Christensen who employs it to designate a miserly agent
whose ultimate values align entirely with her monetary payoffs. See [21].
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of the truth value of p. Whether or not we see this as an essential indictment of the

involved agent’s epistemic rationality,15 the behavior constitutes a decisive strike against

her instrumental rationality.

Speaking more generally, let’s take an agent’s “ends” to be given by her preferences over

a space of ultimate consequences or outcomes. (For the simple agent referenced above,

this space is her set of possible wealth levels.) We may assume these preferences to at

least partially order the space of outcomes.16 If all decision were decision under certainty,

there would be little room (or need) for an interesting theory of instrumental rationality

beyond this.17 We could simply say that an agent should always choose so as to realize a

maximal member of her option set, relative to her preferences over outcomes.18 But, alas,

few decisions, if any, are like this. Typically, we are uncertain what outcomes our actions

will lead to. This requires us to make judgments regarding the comparative instrumental

value of prospects or gambles that may lead to various outcomes depending upon what

the world is like.19

What constraints then do the concerns of instrumental rationality place upon such judg-

ments? In light of the characterization of instrumental rationality offered above, I propose

the following test: an agent’s judgments of instrumental value are rationally inadmissible

15[78] and [21] both argue, convincingly to my mind, that dutch books of this sort do typically involve
epistemic irrationality as well, though that is not the concern of this dissertation.

16While some have suggested that the (partial) ordering assumptions of decision theory may themselves
be derived from considerations of instrumental rationality, this is a vexed issue. I find it difficult to
make sense of decision theory without some sort of ordering principle assumed from the start. For some
discussion, see [3] and [93].

17I say ‘little room’ rather than ‘none’ because a few interesting issues in the theory of rational choice do
present themselves even in the context of decision under certainty, e.g. issues regarding the rationality of
incomplete preferences.

18This neglects consideration of infinite decision problems in which there may be no maximal element
within an agent’s option set.

19Here I endorse a certain judgmentalism about preference over prospects defended in a moderate form
by [11] and a bit more radically by [38]. For a critique, see [92].
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if they are structured such that acting upon them would, in certain choice scenarios, guar-

antee an agent’s failure to achieve her own ends, where failure is understood in terms

of realizing a non-maximal outcome among those practically available to the agent in

the given scenario. Inadmissible attitudes are ones that an instrumentally rational agent

(i.e. one whose behavior is well suited for the achievement of her ends) could not act upon.

A test like this requires some clarification, of course. A simple agent may well, acting

upon her best judgments, buy a bet on a false proposition p, and thus suffer a monetary

loss, without thereby casting any doubt on her instrumental rationality or the coherence

of her judgments. While it is true in some sense that this agent did not do as well, by her

own lights, as she could have (e.g., by not buying the bet), she could not have known this

while deliberating, as p’s truth value was antecedently uncertain to her. We might say

then that instrumentally rational agents never foreseeably20 fail to do well, relative to their

own ends, and judgments of instrumental value are rationally inadmissible if acting upon

them precludes an agent’s instrumental rationality.

A further clarification regards ‘acting upon’. A perfectly rational agent may in some cases,

forseeably, end up worse off than potential counterparts. Such misfortunes may even

occur on account of the agent’s own attitudes without thereby calling into question the

rationality of the agent. For example, an agent may prefer apples to bananas and find

herself in a world that punishes such preferences. In this world, perhaps apple lovers

are only ever able to access lemons (which are judged by the agent to be among the least

desirable fruits), while banana lovers can have their fill of apples and bananas and other

finer fruits. The existence of such worlds does nothing to show that a preference for apples

over bananas is irrational, even though an agent who found herself in such a world would

20That is, from the perspective of their own their own state of information during the course of practical
deliberation.
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of course have reason to alter her attitudes.21 While the agent punished for preferring

apples over bananas ends up worse off than a counterpart with the opposite preference,

she has not done any worse than her counterpart in the sense that her misfortune is not

the result of her own decisions. Unlike the simple agent caught by a clever bookie, she

has not acted so as to make herself worse off. There is no behavior she could have altered

so as to improve her standing in the world. If there were (for example, if she could have

induced in herself a suitable preference shift), then she would have been, like the simple

agent trading Dutch books, recognizable as practically irrational, for then she could have

acted so as to perform forseeably better with respect to the ends fixed for her.

An attitude is not then made rationally inadmissible simply by causing misfortune to

the agent that holds it. Rather, the proposed test asserts that an attitude is rationally

inadmissible just in case it could forseeably lead an agent that holds it into misfortune

by way of the behavior it licenses.22 The judgments of an instrumentally rational agent

ought never preclude her from attaining her ends as effectively as the choice scenario she

finds herself in will allow. Remarkably, this informal test, duly precisified, is capable of

grounding some of the most controversial rationality postulates undergirding Bayesian

decision theory, if only we recognize that planning, or the reflective execution of decisions

across time, is a form of behavior that an instrumentally rational agent may be expected

to succeed at. Before we turn to this argument and the accompanying complexities of

dynamic choice theory, however, some exposition of its intended conclusion (i.e. Bayesian

decision theory as propounded by Savage) is called for.

21In extreme cases, a rational agent may even have practical incentive to alter her attitudes in a way that
will render her subsequently irrational. Consider a world where agents that fail to give up their rationality
are boiled in oil. Relevant here, perhaps, is Parfit’s discussion of rational irrationality. [64].

22The view I take here may be contrasted with the ‘success-first’ project of [34] who suggests that we
might judge the rationality of competing decision theories not just by evaluating the relative instrumental
value of the behavior they license, but also by considering directly the instrumental value of adopting the
theory itself. This difference in perspective may explain part of the attraction of the non-standard decision
theories popular among some AI researchers, e.g. [99], [100].
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1.3 Savage’s Theory

In the version of decision theory due to Savage, choice problems exhibit a tripartite

structure consisting of acts, states, and outcomes. Informally, acts are the objects of choice

encountered by an agent acting under conditions of uncertainty, i.e. they are the prospects

she must decide between. States are ways the world could be that fall outside the agent’s

control but that fix what effects a given act will bring about. Outcomes are those hypothet-

ical effects, described to a level of detail sufficient to capture everything the agent cares

about in the context of the given decision problem.23 All three of these features can be

captured neatly in a decision table:

S1 S2 ... Sn

A1 O(A1,S1) O(A1,S2) ... O(A1,Sn)
A2 O(A2,S1) O(A2,S2) ... O(A2,Sn)
...

...
...

...
...

Am O(Am,S1) O(Am,S2) ... O(Am,Sn)

Each column of the table corresponds to a state, while each row corresponds to an act.

Each cell of the matrix is associated with an outcome, O(A,S), namely, the outcome that

would result from choosing act A in the event that state S were to obtain. In the Savage

setup, states and outcomes are taken as basic or primitive components of a decision prob-

lem while acts are defined derivatively as functions from states to outcomes. On this way

of viewing acts, what function an act Ai is can easily be read off the decision table: it is the

function that maps each state to the outcome falling in the i-th row of that state’s column.

It is important for the formulation of a decision problem that the set of states and the set

of acts each form a partition in the sense that exactly one state must obtain and exactly

one act must be chosen. This guarantees that in a properly described decision problem

an agent will always effect by her choice a particular row of the corresponding decision

table and achieve an outcome identified in a particular cell of that row.

23This ensures, for example, that the values of the various outcomes are state- and act-independent.
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Formally then, every decision problem starts with an appropriate set S of states and set

Z of outcomes and identifies a subset A of F = ZS as the set of available acts, i.e. as the

agent’s choice set. While A will generally be a proper subset of F, Savage still expects

rational agents to have preferences regarding any of the acts in F, including those not

immediately available. (Savage suggests we can interpret these preferences in terms of

hypothetical choices the agent would make from various conceivable choice sets.) For the

sake of mathematical simplicity, we will restrict our attention here to simple acts, i.e. acts

with finite range.24 Doing so allows us to write acts in a convenient way as follows. If f

is a simple act with {O1,O2, ...,On} ⊆ Z as possible outcomes, then letting {E1,E2, ...,En} be

a partition of S into events (i.e. sets of states) such that s ∈ Ei if and only if f (s) = Oi for

1 ≤ i ≤ n, we will write f as {E1,O1; E2,O2; ...; En,On}. This is the act that yields outcome

O1 in case of event E1, O2 in case of E2, etc.

In the context of this framework, what, if anything, does instrumental rationality require

of an agent’s preferences over acts? In the spirit of our previous discussion, let’s again

suppose that an agent has basic preferences over outcomes given by a (perhaps partial)

order on Z that we may denote with�∗ and refer to as the agent’s outcome-preferences. Here

a �∗ b, where a, b ∈ Z, designates that outcome a is ranked at least as high as outcome b

in the ordering that specifies the agent’s ultimate ends.25 We can identify an agent’s strict

outcome-preference relation, �∗, as the asymmetric part of �∗, while the symmetric part, ∼∗,

is her outcome-indifference relation. I will take an agent’s preferences over acts, denoted

by � and referred to as act-preferences, to encode an agent’s comparative judgments re-

garding the instrumental value of acts. That is, f � g, where f , g ∈ F, designates that

an agent judges f to be more choiceworthy than g, i.e. a better means of realizing her

24If S and Z are infinite, then the set of simple acts will of course be a proper subset of F.
25That is, a is either strictly preferred to b or the two are indifferent.
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basic preferences over outcomes. Again, we can identify an agent’s strict act-preferences,

�, as the asymmetric part of �, while the symmetric part, ∼, is her act-indifference relation.

Given this understanding of act-preference, I take a (partial) ordering condition on � to

be conceptually required.26 Clearly, I must judge that any act is at least as choiceworthy

as itself. Further, if I judge that f has at least the instrumental value of g and g of h, then

it would be incoherent for me to fail to judge that f has at least the instrumental value of h.27

However, for the skeptic who questions this constraint on �, given the dynamic choice

principles defended below, we may actually partially derive the ordering postulate on

act-preferences (in particular, its acyclicity component) from another principle that is

evidently tied to instrumental rationality:

State-Wise Dominance: Let f , g ∈ F. If f (s) �∗ g(s) for all states s ∈ S, then

f � g. Further, if any of the weak outcome-preferences are also strict, so is the

act-preference.

State-wise Dominance is a principle requiring that agents (i) weakly prefer acts that are

guaranteed to lead to outcomes at least as good as other acts, no matter what state of the

world obtains, and (ii) strictly prefer such acts if they also offer some chance of yielding

strictly better outcomes. The rationale for this constraint as a principle of instrumental

rationality is clear enough. If one act will lead to an outcome at least as good as what

another leads to, then one cannot sensibly judge the first to have less instrumental value

than the second, nor is this a plausible place to plead incommensurability.

From the standpoint of constructing a theory of instrumental rationality, State-wise Dom-

26In other words, �must be reflexive and transitive.
27John Broome has argued a similar point, namely that “better than” relations are necessarily transitive.

See [17].
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inance seems entirely unobjectionable.28 However, the axiom, even granting ordering,

is insufficient for justifying Bayesianism, according to which rational preferences over

prospects are representable as expected utility maximizing. Indeed, Savage was forced to

employ a much richer array of axiomatic constraints in order to guarantee the existence

of a unique finitely-additive probability measure P and a unique (up to positive affine

transformation29) utility function u relative to which � may be viewed as maximizing

expected utility. That is, for any simple acts f = {E1,O1; ...; En,On} and g,

f � g iff EU( f ) ≥ EU(g),

where:

EU( f ) =
∑n

i=1 P(Ei)u(Oi).

The probability measure P is defined over the set of all events, P(S), and intuitively

measures an agent’s confidence level in each of the events obtaining, while the util-

ity function is defined over the set of outcomes Z and intuitively measures the agent’s

strength of desire for each outcome. (This utility function will also represent �∗ provided

that act-preferences over constant acts go by outcome-preferences over the corresponding

outcomes, a clear requirement of instrumental rationality.) The EU function values acts

according to a weighted sum of the utilities of the outcomes they could yield, where the

weights used are the probabilities that the given outcomes result from the act.

28Though objections do arise if we drop the assumption of act-state independence alluded to in my initial
characterization of states. If an agent exerts some degree of control over the state of the world via her
choice of act, then the axiom of state-wise dominance leads to well-known absurdities. These issues will be
discussed extensively in the context of the causal vs evidential decision theory debate in chapter 4.

29A function f is a positive affine transformation of a function g just in case there exist real-valued numbers
a > 0 and b such that f = ag + b.
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While a remarkable piece of mathematics, the success of Savage’s theorem as an in-

strumentalist defense of Bayesianism requires that we grant the axioms he imposes on

preference the status of instrumental rationality conditions.30 Some of these conditions,

like transitivity, are relatively clear-cut and required by any theory of utility maximization

(expectational or otherwise). Others have stirred substantial debate. Most notable among

these is Savage’s Sure-Thing Principle:

The Sure-Thing Principle (STP): For all f , g, h, h′ ∈ F and E ⊆ S, f h
E � gh

E iff

f h′
E � gh′

E

Here f h
E is the act that agrees with the act f on all but the states contained in E, on which it

agrees with the act h. Intuitively, the STP requires that, when comparing the instrumental

value of acts, agents only be concerned with what the acts yield on states where they

differ. This condition is necessary for Savage’s system as it is a logical consequence of

the hypothesis that an agent’s preferences go by expected utility. The mathematics of

expectation dictate that if two acts agree on a certain event, then their relative expected

utility, measured according to any fixed probability and utility functions, must be invari-

ant under different supposition as to what their restricted agreement consists in. To grasp

the normative content encoded in the STP more clearly, an example may be helpful.

Suppose you are considering going for a hike and are debating whether to head to the

north side of the mountain (which has better views) or the south side of the mountain

(which has easier trails). You are also uncertain as to the weather conditions at the relevant

mountain. In particular, it may or may not be raining at the mountain. If you get to the

mountain and it starts raining, you will head home. Otherwise, you will set off on your

30Or rather, that we grant this status to those of the axioms that are necessary for EU representability. The
merely structural axioms Savage also employs are not strictly necessary for such representability and are
not intended to have normative force.
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hike. This decision problem can be captured in the following decision table:

No Rain Rain
North Nice View Go Home
South Easy Hike Go Home

Table 1.1: Taking a Hike.

Deciding to head to the north side of the mountain will yield you a difficult hike with

grand views if the weather holds out and a trip back home if it ends up raining around the

mountain. Deciding to head to the south side will lead to an easier hike with less grand

views if it doesn’t rain and a trip back home if it does. The acts North and South yield

the same outcome given Rain, so the STP requires that which act is preferred should be

fully determined by whether the agent prefers the Nice View outcome to the Easy Hike

outcome. If Nice View � Easy Hike, then North � South. Otherwise, South � North. The

common outcome received in the event of rain should have no bearing on which act is

preferred: if you were to go to the movies in the event of rain instead of going home,

assuming this outcome is also the same whether you go North or South, your preference

regarding North and South should remain unaltered.

1.4 Allais’ Paradox

Focusing on simple cases like this, the STP can appear nigh unobjectionable as a principle

of instrumental rationality. In fact, it might even be mistaken for the logically weaker

State-wise Dominance principle. But, alas, not all cases are so simple, and the STP does

preclude some preferences that seem prima facie rational to many people. This fact was

first made apparent by the infamous Allais Paradox.31 A ball is to be drawn from a well

mixed urn containing balls numbered one through one hundred. You are offered a choice

31[5].
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between a ticket that pays $5,000,000 if ball 2-11 is drawn and nothing otherwise, call this

option ‘L1’, and a ticket that pays $1,000,000 if ball 1-11 is drawn and nothing otherwise,

call this option ‘L2’. This decision problem is captured in the following table:

Ticket 1 2-11 12-100
L1 $0 $5M $0
L2 $1M $1M $0

Table 1.2: The Allais Paradox, Part 1

Now suppose instead that you are offered a choice between a ticket that pays nothing if

ball 1 or ball 90-100 is drawn and $5,000,000 if 2-89 is drawn, call this option ‘L3’, and a

ticket that pays $1,000,000 regardless of which ball is drawn, call this degenerate lottery

‘L4’. The decision table for this choice is captured in Table 2.

Ticket 1 2-11 12-100
L3 $0 $5M $1M
L4 $1M $1M $1M

Table 1.3: The Allais Paradox, Part 2

Many people report having a strict preference for L1 over L2 in the first problem, while also

having a preference for L4 over L3. Following common custom, let’s refer to simultaneous

preferences for L1 over L2 and L4 over L3 as the Allais preferences.32 The Allais preferences

are paradoxical because, while they strike many as reasonable preferences to have, they

violate expected utility maximization. One can readily see from the above decision tables

that the Allais preferences contradict the STP, and hence these preferences are incapable

of being represented as aligning with expected utility.

L1 and L2 only disagree on states 1-11, which by the STP entails that what happens on

the states 12-100 should not impact which act is preferred. But what happens on states
32Though less common, preferences for L2 over L1 and L3 over L4 will also generate the paradox.
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12-100 is clearly relevant for agents with the Allais preferences: when states 12-100 result

in $0 L1 is preferred to L2, but when those states result in $1M, as in acts L3 and L4, L4 is

preferred to L3.

One reason commonly given as to why agents to prefer L4 to L3 is that the latter has

a much lower minimum payoff than the former ($0 vs. $1M). This is not the case with

L1 and L2, however, which share a common minimum payoff of $0. Agents who are

sensitive to the minimum values of gambles or who care about the spread of values that a

gamble offers may well adopt the Allais preferences on account of these global properties

of the gambles involved. This has been interpreted by many, including most notably

Lara Buchak, as a form of reasonable risk-sensitivity.33 These considerations may seem to

cast significant doubt upon the normative necessity of the STP and hence upon orthodox

Bayesianism as proposed by Savage. At the very least, they motivate the search for further

arguments that might bolster the STP’s claim to characterize instrumental rationality in the

Savage model. Why should the judgments encoded in the Allais preferences be viewed

as rationally inadmissible?

1.5 Diachronic Tragedy

Consider an agent with the Allais preferences who faces a sequentialized version of the

Allais problem. Rather than being offered a direct choice between L1 and L2, the agent

will be offered a choice between deciding between L1 and L2 from her current information

state and deciding between L1 and L2 after learning whether or not the ball to be drawn

is numbered 1 through 11. However, in order to opt to avoid receiving the new evidence

prior to making her decision, the agent must pay some small cost, say, $ε. We assume that

33[18].
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the agent’s preferences are robust in the sense that just as L1 � L2, so too L1 − ε � L2. This

decision problem is depicted in Figure 1.

n0

n2

n4

L2

L1

E

n3

L2

L1
E

n1

L2 − ε

L1 − ε

Figure 1.1: A sequential Allais problem.
Here E is the event that the ball drawn is numbered 1-11.

Let us further suppose that the agent’s decision making at nodes like n3 is unaffected by

the prospects available to her at nodes like n4, which are, from the perspective of n3, strictly

counterfactual. In our formal treatment of dynamic choice theory, this will be codified as

a separability postulate. Let us then also suppose that the agent would prefer to take L2

were she to arrive at n3. If this were not the case, given our separability assumption, we

could substitute reference to L1 and L2 for reference to L3 and L4, respectively, and obtain

the result that L3 would be preferred at the informed nodes (i.e. at n3 and n4). The agent’s

Allais preferences would then enable us to run an exact analogue of the below argument

in this alternate decision tree to arrive at the same conclusion. So there is nothing prob-

lematic for present purposes with supposing that the agent would prefer to take L2 at

node n3.

Granting all this, a rational agent facing this problem may look ahead and observe that if

she decides to forgo making a more informed decision, she will opt for L1− ε since this ac-
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cords with the Allais preferences. If, however, she decides to take advantage of the offered

information, she will end up opting for L2 if she learns that the ball is numbered 1-11, and

will choose something equivalent to L2 otherwise. Hence, if she opts to make an informed

decision, she knows she will effectively wind up with L2. But this is strictly disprefered by

her to L1 − ε, so she will forsake her right to make a better informed decision and opt for

L1 − ε. However, note that this plan (namely, not looking at the available information and

then deciding on L1−ε) is sure to leave the agent worse off than another available strategy

(namely, looking at the evidence and then opting for L1) no matter which numbered ball

has been drawn.

The agent has succumbed to diachronic tragedy. She has implemented a sequence of

choices that is sure to leave her worse off, come what may, than another available se-

quence of choices would have. All of this is forseeable a priori to the agent, just given

the preferences of the agent and the structure of the decision tree. It is not difficult to see

that there is nothing particularly special about the Allais agent; this same fate may befall

any agent whose preferences over Savage acts violate the STP. Violations of the STP entail

susceptibility to diachronic tragedy.34 That is, in carefully constructed sequential choice

scenarios, arbitrary violators of the STP are guaranteed to do foseeably worse than certain

counterparts whose preferences do conform to the STP.

What does this illustration of diachronic tragedy teach us about the rationality of STP

violators? The answer suggested by our previous discussion of instrumental rationality

is clear: diachronic tragedy reveals a failure of rationality on the part of the one who

suffers it. If we apply the test suggested in §2 to assess the rational admissibility of prefer-

ences that fail to align with the STP, it appears we must count STP violations as rationally

34This claim does assume a richness condition on the consequence domain made explicit below.
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inadmissible, no less than violations of the weaker State-wise Dominance principle, for,

as the diachronic tragedy argument reveals, acting upon judgments that violate the STP

may lead, forseeably, to strictly worse outcomes than what certain ways of acting against

those judgments would lead to. Proponents of the inference from diachronic tragedy to

irrationality are simply drawing upon the conviction that instrumentally rational agents

do not, of their own accord and by their own lights, guarantee the frustration of their goals.

Summing up our discussion to this point, I have suggested that we interpret an agent’s

preferences over prospects or gambles as encoding her judgments regarding their relative

instrumental value, i.e. their suitability for realizing her ultimate ends (be they what

they may). Such judgments are rationally inadmissible or incoherent, I proposed, just in

case acting upon them would, in some cases, forseeably guarantee that an agent would

end up worse off than she could have, had she acted differently. A victim of diachronic

tragedy is therefore instrumentally irrational since, by acting according to her own best

judgments, she finds herself in just such a position, and hence holds to a set of judgments

that is rationally inadmissible. In particular then, preferences that violate the STP (includ-

ing the Allais preferences) are inadmissible. These claims, while hopefully intuitive, are

nonetheless largely informal and merit further explication. Dynamic choice theory pro-

vides just the setting in which we may carry out this explication and precisfy the proposed

connection between instrumental rationality and diachronic tragedy, yielding a principle

(Dynamic Optimality) appropriate for use in exploring the rational admissibility of various

attitudes across decision-theoretic frameworks.
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1.6 Dynamic Choice Theory

1.6.1 Basic Framework

While Savage seems to have developed his theory largely with problems of static choice in

mind, the concerns of practical rationality extend beyond such choice scenarios. We are

often confronted with extended decision problems that require planning and foresight on

our part, rather than a single choice here and now. In dynamic choice problems, agents are

called upon to make a series of choices over time that jointly determine (with the states of

nature) what outcomes will obtain. These decision problems are often helpfully modelled

using Bayesian decision trees. We have already employed such a tree in our exposition of the

sequential Allais problem above, but now we will supply a formal definition. Following

Savage, a background set of states, S, and consequences, Z, is assumed in what follows.35

Definition 1. A decision tree is an eight-tuple 〈N,X1,X2,X3,N+(·),n0,S(·), γ(·)〉, where:

i N is a finite set of nodes, partitioned into X1, X2 and X3.

ii X1 is the set of choice nodes.

iii X2 is the set of natural nodes.

iv X3 is the set of terminal nodes.

v N+ : N→ P(N) is the immediate successor function which satisfies:

(a) ∀n ∈ N,n < N+(n)

(b) ∀n ∈ N,N+(n) = ∅ iff n ∈ X3

35This definition is drawn from [36]. Hammond includes chance nodes as a fourth kind of node that may
appear in a decision tree. This allows him to consider the framework of [6] in a dynamic setting. For ease
of exposition, I leave out consideration of chance nodes. Aside from this, I largely follow [36] and [22] in
my formal exposition of decision trees and plans.
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(c) ∀n,n′ ∈ N,N+(n) ∩N+(n′) , ∅ iff n = n′

vi n0 is the initial node and satisfies ∀n ∈ N,n0 < N+(n)

vii S : N → P(S) is a mapping that assigns to each node a set of states such that, ∀n ∈

X2, {S(n′)|n′ ∈ N+(n)} is a partition of S(n), and ∀n < X2,∀n′ ∈ N+(n),S(n′) = S(n).

viii γ : X3 → Z is a consequence mapping that assigns a partial function from S to Z to each

terminal node such that, for all z ∈ X3, γ(z) is defined exactly on S(z).36

Each of these components should become clear through example. Intuitively, a decision

tree consists of a set of nodes connected to each other and ordered in a way specified

by the immediate successor function, N+(·). Since the trees are meant to model bounded

sequential choice problems, they always start with an initial node and end in various

terminal nodes. All non-terminal nodes are either choice nodes, i.e. points at which the

agent must make a choice, or natural nodes, i.e. points at which nature makes a move

and some uncertainty about the world is resolved. Following convention, choice nodes

are represented in trees as squares, while natural nodes are denoted by circles. Terminal

nodes are designated with triangles. Each node is associated, via S(·), with a set of states

of the world, namely, those deemed possible at that node. Similarly, each terminal node is

associated, via γ, with a state-contingent consequence function, namely, the one realized

by the agent if she reaches that node. An example of a relatively simple decision tree is

depicted below.

The agent facing this tree, T1, must decide at the initial node, which is a choice node,

whether to move up or to move down. If the agent decides to move up, the consequence

function γ(z1) will be realized. If the agent chooses to move down, she will first learn

36Following Hammond, given the background sets S and Z, I will assume an unrestricted domain of
decision trees.
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Figure 1.2: T1, a decision tree.

which of the events S(n2) and S(n3) obtains and then, depending on what she learns, face

either a choice between γ(z2) or γ(z3) or a choice between γ(z4) or γ(z5).

Agents facing dynamic choice problems can reflect not only on what action to take at a

currently occupied choice node, but also more broadly on what course of action to imple-

ment in the decision problem viewed as an extended whole. That is, they can evaluate

competing plans. Given a tree T, a plan specifies a unique move for every choice node

in T that an agent facing T could reach, given implementation of earlier portions of the

plan. It thus traces a unique path through the tree, given any combination of moves by

nature at its nodes. So, for example, in T1, there are five possible plans: (i) move up at

n0, (ii) move down at n0 and then either move up at n2 or move up at n3, (iii) move down

at n0 and then either move down at n2 or down at n3, (iv) move down at n0 and then ei-

ther up at n2 or down at n3, and (v) move down at n0 and then either down at n2 or up at n3.

It is convenient to follow Cubbit in formally identifying a plan p in a decision tree T with

the set of terminal nodes in T that could be arrived at through implementation of p. On

this way of viewing plans, the five possible plans available in T1 are (i) {z1}, (ii) {z2, z4}, (iii)

{z3, z5}, (iv) {z2, z5}, and (v) {z3, z4}. To formally codify this definition of a plan, we need to

introduce a bit more terminology. The formalism I’ll drag out here is a bit cumbersome,

but in the end it will allow us to think about planning with greater precision and clarity.
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First, let a branch in a tree T be a sequence 〈n0, . . . ,nk〉, where n0 is the initial node in T,

nk ∈ X3, and ni+1 ∈ N+(ni), for 0 ≤ i < k. Intuitively, a branch is simply a path through a

tree defined by a complete specification of moves for both the agent and nature. We’ll say

that a member of a branch succeeds those nodes that come before it in the sequence and

precedes those that come later. It will be useful to be able to refer to the set of nodes that

precede a given node n in any branch that contains it, so denote such a set by R(n). Now, if

we let L(n) be the set of all nodes contained in branches that include n, we are able to state

simply the following definition: For any node n in a tree T, let FT(n) = {n′|n′ ∈ X3 ∩ L(n)}

be the set of feasible terminations after node n. In other words, FT(n) is the set of terminal

nodes reachable from n by some combination or other of moves on the part of nature and

the agent. (For example, at the initial node n0 of any tree T, FT(n0) = X3.) We will say that

two branches diverge at a node n if n is their last member.

Next, we need to say what it is for two nodes in a tree to be connected. Let n and n′ be

nodes in a decision tree T. Then n and n′ are connected iff (i) there is a branch b that

contains n and a branch b′ that contains n′ such that b and b′ diverge at some natural node

ny that precedes both n and n′ and (ii) R(n) − R(ny) and R(n′) − R(ny) are subsets of X2, i.e.

contain only natural nodes. Intuitively, two nodes are connected just in case any sequence

of moves by an agent to get to one of them leaves open the possibility that the agent will

wind up at the other, thanks to nature.

Finally, we can formally define a plan at a node n in a decision tree T:

Definition 2. Given a node n in a tree T, a subset p of FT(n) is a plan at node n just in case:

(i) if z, z′ ∈ X3 are connected, then, if z ∈ p, z′ ∈ p too, (ii) if z∗ is a terminal node connected to a
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choice node n′, then z∗ ∈ p iff FT(n′) ∩ p , ∅, and (iii) if n′′ and n′′′ are connected choice nodes

that succeed n, then FT(n′′) ∩ p is non-empty iff FT(n′′′) ∩ p is nonempty.37

Where n is a node in a decision tree T, we let Ω(T,n) stand for the set of all plans at n.

Also important for sequential choice is the notion of a plan continuation. Fix a tree T and let

na and nb be nodes of T such that na precedes nb. If p is a plan at na, then the continuation

of p at nb is defined as p(nb) = p ∩ FT(nb). If p(nb) is non-empty (i.e., intuitively, if p

makes arrival at nb possible), then p(nb) will itself, of course, be a plan at nb. Informally,

a plan continuation at a node n of a plan p then is simply that part of p that can still be

implemented at n. We can also define Ω(T,na)(nb) to be the set of plan continuations at nb

of plans at na.38

1.6.2 Rational Planning

With a precise framework for modelling sequential decision making now in place, we can

consider more carefully what rationality requires of agents in such settings. I will assume

that just as an agent can make judgments regarding the comparative instrumental value of

Savage acts, so too can she make such judgments regarding possible plans available to her

in hypothetical decision trees. Following McClennen, I will suppose that such judgments

are captured by an agent’s admissibility function, denoted by D, which takes as input a set

of plans available at a decision tree T and a node n within that tree and returns the subset

of such plans that the agent judges to be maximally effective at realizing her ultimate ends.

37Note the difference between plans as defined here and the strategies studied in dynamic game theory.
A strategy specifies a move for every information set in a given game tree, regardless of whether the
information set could be reached via the agent following the given strategy. A plan, by contrast, only
specifies moves at those choice nodes that an agent could actually reach, given implementation of the plan.

38This set will be empty if FT(na) ∩ FT(nb) = ∅.
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Note that any plan in an arbitrary decision tree can be associated with a partial function

from states to outcomes, sometimes known as a conditional Savage act.39 If p ∈ Ω(T,n),

we may define the conditional act associated with p by: p∗(s) =d f γ(z)(s) if s ∈ S(z), for all

members z of p, where γ is T’s consequence mapping.40 Informally put, the conditional

Savage act associated with a plan is simply the state-contingent consequence function

induced by executing that plan. I will sometimes write ‘ fE’ to denote the conditional act

defined as the restriction of unconditional act f to event E. We may further denote the

set of conditional acts associated with plans available at a node n in a tree T by Ω∗(T,n).

If an agent takes attitudes toward both conditional Savage acts and hypothetical plans,

it is entirely reasonable to assume, in the current framework, that there be an alignment

betwixt these two sets of judgments. That is, if we assume that, for any E ⊆ S, an agent’s

preferences over the conditional acts defined on E are given by a (partial) order denoted

by �E (here the case of E = S yields her familiar preference ordering over Savage acts,

which I will continue to write as �) and if we employ M(Ω∗(T,n)) to denote the set of

maximal elements of Ω∗(T,n) relative to �S(n), we may further assume:

Plan Reduction: For all trees T and nodes n in T, p ∈ D(Ω(T,n)) iff p∗ ∈

M(Ω∗(T,n)).

Plan Reduction requires that the instrumental value of plans be assessed according to the

value of their corresponding conditional acts. One might be tempted to think that, given

a set of preferences over conditional acts, Plan Reduction then provides an adequate

blueprint for approaching problems of sequential choice. When faced with a problem

modelled by a decision tree T, so this thought goes, an agent may simply select a plan

from amongst the members of Ω(T,n0) that she judges most favorable with respect to the

aim of realizing her ultimate ends, such judgments being reached by consideration of the
39Such conditional acts are the object of inquiry in [56].
40Since the events associated with any non-identical terminal nodes in the same tree will necessarily be

disjoint, this will indeed define a (possibly partial) function on S.
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instrumental value of the members of Ω∗(T,n), and then proceed to implement the first

stage of the chosen plan.

However, this approach to dynamic choice has appeared short-sighted to many decision

theorists. It seems to proceed as if an agents’ objects of choice in a sequential decision

making scenario were entire plans. But, except in trivial decision trees, this is not the case.

All an agent can immediately do, depending on her location in the decision problem, is

implement a presently accessible stage of a logically available plan. But she cannot guar-

antee that she will follow through on implementing that plan in future choice nodes of

the tree. A sophisticated agent will therefore anticipate how she would choose at the final

choice nodes she could reach in the decision tree at hand, and then fix those choices for

purposes of her current deliberation among plans, effectively paring down the decision

tree by eliminating paths she knows she would not opt to take in the future. She can

then work backwards through the tree, repeating this process of pruning the tree at all fu-

ture choice nodes until she reaches her current position. Of the plans remaining after this

process is completed, rational agents can then opt to implement a plan that is most favored.

In other words, sophisticated choice proponents propose that being associated with a

maximally favorable prospect is not sufficient for a rational agent to start implementing a

plan. In addition, the plan must be f easible.

Definition 3. A plan p at a node n in a tree T is (dynamically) feasible at n in T just in case,

for any choice node, na that succeeds n in T, p(na) ∈ D(Ω(TD,na)), if p(na) is non-empty, where

TD is the tree obtained by pairing back T according to backward induction via D. Let the set of all

dynamically feasible plans at a node n in a tree T, relative to admissibility function D be denoted

by DFD(T,n).
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Note that this notion of feasibility accounts only for internally sanctioned preference

shifts on the part of the deliberating agent and not externally induced shifts like the one

famously suffered by Ulysses.41 Rational agents, like Ulysses, will of course take po-

tential shifts of the latter sort into account when making judgments about the feasibility

of logically available plans. But we may safely set such cases aside in the context of

this essay’s argument. We are here interested in assessing the instrumental rationality of

agents that adopt various sets of action-guiding attitudes by examining what behaviors

those attitudes license. For this purpose, it is appropriate to assume that the attitudes in

question evolve only in ways endorsed by those very attitudes and not by any Siren’s song.

Assuming that a rational agent’s attitudes always license adopting a plan that is maximal

among those that are feasible and that an agent will act accordingly, we may infer an

agent’s behavior from her judgments of admissibility. Let a behavior norm β specify, for

any decision tree, the set of plans that the agent might implement in that tree.42 In general

then, β(T) ⊆ Ω(T,n0). But in the special case of a rational agent who acts according to her

admissibility function D in a sophisticated fashion, we have:

Sophistication: For all trees T, β(T) = {p ∈ Ω(T,n0)|p ∈ D(DFD(T,n0))}.

Sophistication dictates that a rational agent’s behavior be constrained by her judgments

of the admissibility of available plans, albeit in a slightly more roundabout way than that

dictated by the naive procedure originally proposed. Granting that her judgments of the

admissibility of plans are in turn informed by her preferences over conditional acts, as re-

quired by Plan Reduction, Sophistication provides a reasonable translation of these latter

attitudes into behavior across the full range of hypothetical choice scenarios representable

41Relevant here also is the infamous addict of [35].
42So understood, the notion of a behavior norm employed here is slightly different than the familiar

notion employed by [36].
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as Bayesian decision trees.

One point deserves special note here. There are multiple ways one might understand the

backward induction procedure applied to a decision tree T via admissibility function D

to arrive at TD. The ambiguity arises due to the possibility of non-initial choice nodes

in T involving selection amongst indifferents (or incommensurables). If a future choice

node requires selection amongst such options how should the tree be paired down to

arrive at TD? One thought would be to leave such options in place and, when assessing

the admissibility of options further upstream, treat such nodes as chance nodes that may

result in any of the indifferent possibilities being chosen. This proposal effectively turns

the dynamic choice problem into an extensive-form game in which an agent’s possible

future selves are entirely distinct players whom she is unable to influence in any way.

Such an approach leaves no room for the sort of intentional, cross-temporal planning that

is a hallmark of human agency.

To allow for a more robust conception of rational planning, we may instead endorse the

‘splitting procedure’ defended by Wlodek Rabinowicz.43 On this proposal, the pairing of

the tree will always be applied to plans taken as wholes. So, for example, if at some choice

node an agent finds herself uncommitted between two options both will be left intact until

the next stage of the induction. At that stage, an agent will consider the value of the plans

that include the indifferent or incommensurate options as continuations. If either plan ap-

pears non-maximal at this stage, its whole continuation will be cut out from the tree. This

process is repeated until the agent reaches the initial node. Any plan that survives this

pruning of the decision tree will be one that an agent would be willing to follow through

on, given her anticipated future values. As Rabinowicz notes, this method assumes that

43See [68] and [69]. A similar approach is also applied in game theory by [9] to refine the Subgame Perfect
Equilibrium concept. Asheim
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an “agent will follow a plan as long as he lacks a positive reason for deviation.”44

Unfortunately, endorsement of this approach does put me at odds with some advocates

of sophisticated choice who seem to think the sort of cross-temporal agency implied by

this method of determining feasibility is impossible.45 In this, I think these theorists go

too far. Sophistication rightly insists that a rational agent’s decision-making is at all times

forward-looking and consonant with her values at the time of choice, but this is still con-

sistent with past intentions playing an action-guiding role in the agent’s behavior, e.g. by

acting as a tie-breaking mechanism in cases in which an agent must choose from a choice

set that lacks a unique maximal member. Indeed, adherence to the version of sophisticated

choice endorsed here (i.e. one that allows for the ability to execute plans and act on past

intentions) is essential to guaranteeing the avoidance of diachronic tragedy if we wish to

allow for the rational possibility of incomplete outcome- and act-preferences.46

This has put us in a position to understand the phenomenon of diachronic tragedy more

formally. Letting A = {�E |E ⊆ S} be an agent’s set of preference relations over condi-

tional acts, let βA be the behavior norm induced by A in line with Plan Reduction and

Sophistication. We can now define both a strong and a weak sense of diachronic tragedy:

Definition 4. An agent’s behavior norm β is strongly tragic just in case there exists a decision

tree T such that, for all p ∈ Ω(T,n0), p ∈ β(T) only if there exists q ∈ Ω(T,n0) such that q(s) �∗ p(s)
44See [69], p. 287.
45For example, [88] fn. 20 dismisses the idea that past intentions can play any role in fixing future choice

amongst indifferents and contends that the contrary view amounts to the resolute choice theory I criticize
below.

46Consider, for example, an agent who lacks a preference between f and g, while strictly preferring f
to some state-wise dominated plan f − ε, regarding which the agent also lacks a preference vis-a-vis g.
Imagine that the agent is offered a choice between f and a subsequent choice of g and f − ε. If the past
preferences of the agent, codified in her future-directed intentions lacked the bearing on her future choices
posited by Rabinowicz’s version of sophisticated choice, then it would be impossible to preclude an agent
from implementing the state-wise dominated plan associated with f − ε while allowing her to realize the
maximal plan associated with g. For a detailed defense of the significance of intention and temporally
extended agency for practical rationality along distinct though related lines, see [14] and [15].
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for all s ∈ S(n0). An agent’s judgments A are strongly tragic just in case βA is strongly tragic.

Definition 5. An agent’s behavior norm β is weakly tragic just in case there exists a decision tree

T such that, for some p ∈ Ω(T,n0), p ∈ β(T) and there exists q ∈ Ω(T,n0) such that q(s) �∗ p(s)

for all s ∈ S(n0). An agent’s judgments A are weakly tragic just in case βA is weakly tragic.

Clearly, strongly tragic behavior norms (attitudes) will also be weakly tragic, but not

vice-versa. In the strong sense, a set of judgements regarding the instrumental value of

(conditional) Savage acts leads to diachronic tragedy just in case there is a possible decision

scenario in which every plan that an agent acting on those judgments could implement in

that scenario is associated with a prospect that is state-wise dominated by a prospect asso-

ciated with another plan available in that scenario. In the weak sense, a set of judgements

regarding the instrumental value of (conditional) Savage acts leads to diachronic tragedy

just in case there is a possible decision scenario in which some plan that an agent acting

on those judgments could implement in that scenario is associated with a prospect that is

state-wise dominated by a prospect associated with another plan available in that scenario.

I claim, along with other defenders of diachronic tragedy arguments,47 that a rational

agent cannot adopt even weakly tragic attitudes. That is, I accept what we might call:

Sequential Dominance: A rational agent’s behavior norm is not weakly

tragic.48

47[16] is one such notable defender: “[I]f it is knowable a priori that strategy a yields a better result than
strategy b, then it is pragmatically irrational to choose strategy b when strategy a is available.”

48Some defenders of diachronic tragedy arguments, notably [13], would insist that Sequential Dominance
is too strong a rationality postlate and ought to be replaced with a principle forbidding merely strongly
tragic attitudes. My sense is that the hesitancy these authors feel toward embracing the stronger version of
Sequential Dominance is motivated by a commitment to a strong version of sophisticated choice on which
past preferences can play no role whatsoever (not even a tie breaking one) in settling future behavior. If
we accept such a strongly disunified view of sequential decision making, then avoidance of weakly tragic
attitudes requires that one’s preferences satisfy the completeness axiom, which may seem like an implausible
condition of instrumental rationality. Since these authors wish to maintain the rationality of incomplete
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This follows from the account of instrumental rationality endorsed here. An instrumen-

tally rational agent is one whose behavior is well-suited to the attainment of her ends,

which are taken as given. But an agent whose behavior is even weakly tragic may in

some situations frustrate her own ends by implementing a course of action that is strictly

dominated by another course of action that she could have taken. She may in some cases

forseeably end up with a worse outcome than she would have realized had she conformed

to a different behavior norm. If we further accept the plausible connections between ra-

tional behavior and judgment posited by Plan Reduction and Sophistication, we may also

conclude that a rational agent will never exhibit diachronically tragic attitudes either.

As suggested by the discussion in §5, the Allais preferences are diachronically tragic49

even in the strong sense and, hence, in my view rationally inadmissible. There is a sense

in which this is true of any preferences that violate the STP.50 I relegate a careful discussion

of this claim to an appendix. At present, I want to turn to another principle of rational

planning that I find compelling in the current setting and connect it with the avoidance of

diachronic tragedy.

preferences, they are forced to deny that weakly tragic attitudes are irrational. However, endorsement
of a modestly more robust account of temporally-extended agency like the one codified in the version of
Sophistication I favor, eliminates this dilemma. We may then happily embrace both Sequential Dominance
and the rational permissibility of incomplete preferences.

49This claim of course assumes the standard caveat that I have correctly described the outcome space in
the Allais problem. If an agent cares about non-monetary factors, e.g. the possibility of experiencing regret
or even strict counterfacts about what would happen conditional on various non-actual states, then her
apparent Allais preferences may not really violate the STP at all and lead to know tragedy at all. See the
discussions in [17], [18], [66], and [12]. Such a liberal carving up of outcomes, while to my mind entirely
appropriate given our characterization of decision theory as simply a theory of instrumental rationality, does
present difficulties in the context of Savage’s theory given his other postulates, especially his rectangular
field assumption. [12] suggest this tension as a reason to prefer the Jeffrey framework to be discussed in
subsequent chapters.

50Technically, if we want to continue to allow for the rationality of incomplete preference rankings,
exclusion of diachronic tragedy only allows us to derive a restricted version of the STP that assumes
comparability of the relevant prospects. The argument also makes use of a technical assumption regarding
the richness of the agent’s act-preferences.
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1.7 Dynamic Optimality

Katie Steele suggests that diachronic tragedy arguments that lean upon a principle like

Sequential Dominance are more plausible than other dynamic choice arguments on the

market, most notably Hammond’s, which relies upon a sort of normal-extensive form

reduction principle he dubs ‘Consequentialism.’ According to Steele, “Idealised NEC

[Normal-Extensive Form Coincidence] per se is not a compelling constraint on decision

rules. Rather, it is the possibility of suffering a sure loss due to one’s own decision rule that,

arguably, demonstrates an inconsistency, or at least a deficiency, in that rule.”51 Though I

share some of Steele’s hesitancy regarding Hammond’s Consequentialism,52 a close cousin

of Hammond’s principle is, I believe, every bit as plausible as Sequential Dominance as

a principle of instrumental rationality and, in fact, actually manages to avoid some of its

pitfalls.

The principle I have in mind requires that a rational agent’s judgments never be structured

such that acting upon them would preclude implementing plans that the agent judges to

be ex ante optimal. That is, for a rational agent, any admissible plan should be a feasible

one. I call this principle Dynamic Optimality. This principle is, I believe, an improvement

over Sequential Dominance, which, while very plausible under the assumptions of our

discussion so far, has several drawbacks that limit the scope of its status as a rationality

principle. For example, Sequential Dominance takes the form of a sequentialized version

of the State-wise Dominance principle, and as such requires for its statement an assumed

domain of ultimate consequences. This is in keeping with the Savage framework but

more awkward in frameworks like Jeffrey’s that don’t require the existence of such an

51[88], p. 471.
52Hammond’s Consequentialism entails the completeness of weak preference, for example, which is

arguably implausible as a requirement of instrumental rationality. The Dynamic Optimality principle I go
on to defend does not have this consequence.
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ultimate consequence domain. Further, Sequential Dominance is, like static dominance

principles, unsustainable in infinite decision problems. In some such problems, there are

no undominated options and thus, unless we want to rule out all behavior in such scenar-

ios as irrational, we cannot insist upon an infinite version of Sequential Dominance.53

These problems do not, however, pose any problem for Dynamic Optimality, which

requires for its application to decision problems neither the posit of ultimate outcomes

nor the availability of optimal options. We can state this principle formally as:

Dynamic Optimality: For all trees T and nodes n in T, D(Ω(T,n)) ⊆ DFD(T,n).

This principle enjoys a fairly evident rationale for qualifying as a norm of instrumental

rationality. If an agent’s attitudes violate Dynamic Optimality, then there will sometimes

be logically available plans which she judges to have maximal instrumental value and yet

which she is unable to rationally implement because of her own attitudes. Moreover, it

is worth noting that in the context we have been assuming (namely, Savage’s framework)

satisfaction of Dynamic Optimality in the domain of finite decision trees is equivalent to

satisfaction of Sequential Dominance, given a richness assumption regarding preferences.

Hence, while more amenable to generalization than Sequential Dominance, Dynamic Op-

timality should be viewed as no less plausible than Sequential Dominance.

To prove this claim, we first define the needed richness condition.

Definition 6. A set of attitudes A on F is rich just in case for any �E∈ A, if f , g ∈ F are such that

fE �E gE, then there exists f ′ ∈ F such that f state-wise dominates f ′ and f ′E �E gE.

Intuitively, attitudes are rich just in case whenever they rank one act as strictly better than
53For an interesting discussion of infinite dynamic choice problems that lack optimal solutions, see [8].

34



another there is some small cost that they would license one to pay to receive the better act

in place of the worse. This condition is likely met to a high degree by the preference struc-

tures of most human agents. Can’t one typically sour a range of outcomes just slightly

enough (e.g. by subtracting a few cents of income, a few seconds of time, etc.) to retain

any antecedent strict preference for the unsoured act over another? Another route we

could take here would be to introduce lotteries as possible outcomes. We could plausibly

then achieve the desired souring by varying ever so slightly the probability with which

a lottery yields a better vs. a worse outcome. Be that as it may, however, the role played

by the richness assumption in connecting Dynamic Optimality to Sequential Dominance

does not require us to imagine that it is generally satisfied. Certainly, richness is no

strike against the rational permissibility of a set of judgments. If Dynamic Optimality is

co-extensive with avoidance of diachronic tragedy in the special case of agents holding

rich attitudes, a more general connection between Dynamic Optimality and instrumental

rationality may be suggested.

We can now establish:

Proposition 1. If A is a rich set of attitudes satisfying State-wise Dominance, and D the plan

admissibility function generated from them by Plan Reduction, then D(Ω(T,n)) ⊆ DFD(T,n) iff A

is not weakly tragic.

Proof. Let A be a rich set of attitudes over a domain of acts F, and let D be the plan admis-

sibility function generated from A.

(→) We first argue that D(Ω(T,n)) ⊆ DFD(T,n) entails that A is not weakly tragic. So,

suppose D(Ω(T,n)) ⊆ DFD(T,n). We need to show that βA is not weakly diachronically

tragic. That is, letting T be an arbitrary decision tree, we need to show that there does
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not exist p ∈ βA(T) such that for some q ∈ Ω(T,n), q∗ state-wise dominates p∗. Consider

an arbitrary p ∈ βA(T). We know, by definition then, that p ∈ D(DFD(T,n)). Hence, since

D(Ω(T,n)) ⊆ DFD(T,n), Plan Reduction requires that p ∈ D(Ω(T,n)). But then p∗ cannot

be not state-wise dominated by any q∗ ∈ Ω∗(T,n), since, granting Plan Reduction and

State-wise Dominance, p could not then be optimal. Thus, βA is not weakly tragic and, be

extension, neither is A.

(←) We now argue to D(Ω(T,n)) ⊆ DFD(T,n) from the assumption that A is not weakly

tragic. Suppose A is not weakly tragic. Let p ∈ D(Ω(T,n). We want to show that

p ∈ DFD(T,n). Suppose that p < DFD(T,n). Consider the tree T∗ that adds p∗ − ε as an

initial option, where p∗−ε is a conditional Savage act defined on S(n) to which p∗ is strictly

preferred but which is strictly preferred to all other members of Ω∗(T,n) to which p∗ is

strictly preferred. (By the richness assumption we know such a prospect exists.) If there

are no members of DF∗D(T,n) to which p∗ is indifferent, then we have a diachronic tragedy

in T∗. Suppose there were members of this set to which p∗ is indifferent. By the richness

assumption, we can then slightly sour these prospects on the states on which they disagree

with p∗, which will make them strictly less preferred than p∗, by State-wise Dominance.

Now alter the choice of p∗ − ε if necessary to ensure that is also strictly preferred to these

plans, and we will have, by Plan Reduction, that p − ε ∈ D(DFD(T∗,n0)), and hence we

again have diachronic tragedy in T∗. �

In the context of the Savage framework, with our attention restricted to finite decision

trees, there is a tight connection between never implementing state-wise dominated plans

and satisfying the Dynamic Optimality postulate, granting the version of Sophistication

suggested above. Hence, to the extent that we find the avoidance of diachronic tragedy a

plausible requirement of instrumental rationality, we have good grounds, in the context

of the present framework, to think the same regarding Dynamic Optimality. Moreover, I
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think the principle enjoys plausibility in its own right even apart from such connections.

If an agent’s own attitudes preclude her from implementing a plan that she judges to be

optimal with respect to promoting her ends, then the agent’s instrumental rationality is

thereby called into question. The resultant possibility of diachronic tragedy is a dramatic

way of drawing out this concern. Or so it seems to me, but there remain objections to

attend to.

1.8 Objections Defused

Thus far, I have attempted to distill the common assumptions of standard dynamic choice

arguments into several plausible rationality postulates: principally, Plan Reduction, So-

phistication, and Dynamic Optimality. From the perspective of mainstream decision the-

ory, Plan Reduction and Sophistication are hard to resist. This leaves Dynamic Optimality

(or, equivalently, Sequential Dominance) as the arguments’ weakest point. Objection to

Dynamic Optimality54 is in fact so common among the critics of dynamic choice argu-

ments that I will refer to it as ‘the Standard Objection’. Outside the bounds of orthodox

decision theory, a more radical school has granted Dynamic Optimality while objecting to

the Sophistication principle, offering in its place an alternative model for translating judg-

ments of plan admissibility into behavior: the theory of resolute choice. Still other critics

of dynamic choice arguments are less certain which of the principles proposed here goes

awry, merely contending that the principles’ respective motivations are at loggerheads

and, hence, that they ought not all be endorsed at once. Each of these worries merits a

due response.

54Typically phrased as an objection to the reduction of extensive form decision problems to their normal
form counterparts.
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1.8.1 The Standard Objection

The Standard Objection to principles like Sequential Dominance and Dynamic Optimality

has been raised by a diverse chorus of voices and maintains that the appropriate objects

of rational criticism are individual choices and not cross-temporal plans or strategies or

sequences of actions. Brian Hedden has raised the Standard Objection forcefully in the

context of his defense of a time-slice approach to rationality.55 However, I take the basic

objection, while expressed quite differently, to be shared by a number of prominent de-

cision theorists, including Teddy Seidenfeld, Isaac Levi, and James Joyce.56 These critics

allege that the inference from diachronic tragedy and similar ills to irrationality is invalid

because it rests upon a confusion regarding what an agent’s options typically are in de-

cision problems and, consequently, involves misidentifying the sorts of behavior that an

agent can be rationally criticized for.

Consider, for example, the diachronic tragedy that befell the Allais agent in §5. While

it is true that an agent with the Allais preferences will implement a plan that is strictly

dominated by another logically available plan, she nonetheless never chooses an option

that is so dominated by another. At the first stage of the problem, she opts to directly take

L1−ε. But this selection is not, from this agent’s standpoint, dominated by any of the other

acts she could have taken at that choice point. The choice of L1−ε is clearly not dominated

by a choice of L2 − ε, and the sophisticated agent will realize that a choice to delay the

decision is tantamount to receiving L2, which again does not dominate L1 − ε. Hence, the

sophisticated Allais agent’s choice of L1 − ε is quite appropriate, given her judgments of

instrumental value and the structure of the problem she finds herself in. The plan that

dominates the realized prospect (namely, delaying and then choosing L1 come what may)

55See [40], [39]).
56See especially [74], [75], [51], and [48].
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is infeasible for the agent to implement at the initial node. It is, given her values, not

an option for her. Why then should her failure to implement this infeasible plan count

against her rationality?

There is much to agree with in this statement of the Standard Objection. Plans are indeed,

in general, not options among which an agent can simply pick at will. Typically, she can

only decide to implement a particular stage of a plan, i.e. whatever options are directly

available to her at the choice point she currently occupies (and perhaps form defeasible

intentions regarding her future decisions). Hence, the objector is entirely correct that

the sophisticated Allais agent who falls prey to diachronic tragedy never chooses poorly,

relative to her stated values. However, these facts are insufficient to absolve the tragedy

prone agent of the charge of irrationality. If some external factor (e.g. a Siren’s song) had

rendered the dominant plan infeasible for the agent, it would indeed be inappropriate to

make any negative inferences regarding the agent’s instrumental rationality. But, as Katie

Steele notes, such is not the case in this problem:

“The agent is not forced into sure loss by any external circumstances; they

rather bring this outcome upon them self, due to their own decision-making

plans. Surely, this is a significant mark against any such decision plans.”[88]

The choice to take L1− ε at the outset may be optimal if we hold fixed the agent’s choice at

the hypothetical second stage of the problem, but when assessing the rational admissibil-

ity of a set of attitudes by considering the behavioral implications of those attitudes (as we

are) this is not an appropriate supposition to hold fixed. On the proposal sketched above,

assessing whether a given set of judgments regarding the instrumental value of prospects

is rationally admissible in light of an agent’s basic values involves considering whether

those judgments are structured so as to license behavior that is ineffective at furthering
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the agent’s basic values. Diachronic tragedy arguments make clear that STP violating

preferences do not pass this test.

Note that this proposal neither rejects a synchronic understanding of options nor disavows

the legitimacy of sophsticated choice as an approach to sequential decision making. To

the contrary, sophistication (albeit, of an appropriate sort) is a key assumption throughout

this paper. Hence, I do not deny that, e.g., the dominant option in the sequential Allais

problem is infeasible for an agent with the Allais preferences. But this is precisely the

problem. An instrumentally rational agent’s attitudes should not be structured such that

those very attitudes render optimal plans infeasible to implement.57

1.8.2 The Resolute Choice Objection

I have claimed that an instrumentally rational agent is, at a minimum, one whose be-

havior never forseeably frustrates her own ends. This idea is codified in the Sequential

Dominance principle. Following the lead of Edward McClennen, some decision theorists

have granted this much, therefore accepting the inference from diachronic tragedy to

irrationality, while at the same time jettisoning the Sophistication principle. According

to these proponents of resolute choice, a rational agent’s behavior at a particular stage of

a sequential choice problem depends not simply upon the prospects that lie open to her

at that stage of the problem, but rather also upon the broader context fixed by the larger

sequential choice problem with respect to which the current stage and its possible suc-

57Note also then that the style of dynamic choice argument defended here is entirely compatible with
the synchronicity thesis of time-slice rationality according to which the rationality of an agent at a time
supervenes upon the attitudes she holds at that time. (See [40].) According to diachronic tragedy arguments,
the propensity of a set of attitudes to lead to diachronic tragedy reveals a flaw in those attitudes, but this
propensity is a feature of an agent’s attitudes at a time and hence her rationality at a time may well supervene
upon the attitudes she holds at that time.
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ceeding stages form a subproblem.58

I have already (controversially) granted one way in which an agent’s behavior in a sub-

tree may rationally be affected by the larger tree in which it appears. On the version of

Sophistication I favor, intentions formed antecedently at the start of a sequential choice

problem can play a tie-breaking role throughout the problem, serving to fix downstream

behavior at later choice nodes in which multiple options appear maximally choiceworthy.

The proponents of resolute choice, however, go much further than this. According to

their approach, agents may permissibly recognize past resolutions to implement certain

plans as relevant to their current evaluation of plans in such a way as to lead them to opt

for plan continuations that they would have, in other contexts at least, considered strictly

suboptimal.

To see how this works, consider again an Allais agent facing the sequential choice problem

described in §5. A resolute agent facing this problem will consider all the plans logically

available to her at its start and resolve to implement whichever she judges to be ex ante

optimal. At subsequent stages of the problem, she will evaluate still available plan contin-

uations according to whether they extend the plan(s) initially judged optimal. So, since,

from the perspective of the Allais agent, the plan that involves delaying choice until the

receipt of further information, and then opting for L1 regardless of what is learned, is ex

ante optimal, the agent will judge this plan as the one to be implemented. If she sets

out on this course of action and subsequently learns either E or its negation, the resolute

agent will continue to view the continuation of this plan as optimal in virtue of the fact

that it extends an ex ante optimal plan. So while sophisticated choice is a forward-looking

approach to sequential decision making, resolute choice is a backward-looking approach.

58For McClennen’s defense of resolute choice, see [60]. Also relevant are [57], [29], and, in a somewhat
different way, [61] and [92].
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There are several ways to understand this idea. On one way of reading the proposal, prior

intentions or resolutions can affect the outcomes an agent receives in a dynamic choice

problem, perhaps because the agent values being a steadfast planner. Alternatively, per-

haps the agent’s preferences are sensitive to counterfacts in such a way that the agent’s

preference for L1 over L2, conditional upon E, is contingent upon what would have been

happened had E been false. Either of these ways of understanding resolute choice, while

reasonable, obviate the need for it as a distinct method of sequential choice. On either

of these interpretations, we simply need to refine the agent’s outcome space to account

for their preferences regarding steadfastness and/or counterfacts, and there is no longer

any need to consider such agents as offering any counterexample to the Sophistication

principle.59

Qualification as a distinctive method of sequential choice requires an alternative inter-

pretation of resolute choice. Two suggestions naturally present themselves here. First,

one could view resolute choice as requiring counter-preferential choice. On this reading

of the method, after opting to delay her decision and then learning E, the resolute Allais

agent will, in line with her Allais preferences, judge that it would be better to shift her

initial plan and opt for L2 and yet, in line with her prior resolution, nevertheless opt for

L1 instead. Second, one might view resolute choice as inducing suitable preference shifts

in dynamic choice problems so as to ensure that, acting upon those preferences, the agent

realizes an initially favored plan. In the case of the Allais agent, this would mean shifting

to prefer L1 over L2 conditional upon E.

59Granted, akin to the issues noted in footnote 43, some of these proposals may call into question other
assumptions of both the Savage setup (e.g. its rectangular field assumption) and the dynamic choice
arguments offered here (e.g. the assumed unrestricted domain of decision trees). These are matters that I
believe ultimately tell in favor of Jeffrey’s framework over Savage’s but discussion of this must wait until
the next chapter. Though see [24] for an interesting argument that these worries may be unfounded.
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Each of these readings renders resolute choice implausible as a choice method for in-

strumentally rational agents. On the interpretation of act-preference that I have been

employing, a preference for one prospect over another reflects a judgment that the former

act has greater instrumental value (i.e. is better suited to the end of bringing about good

outcomes) than the former. Requiring that agents either act contrary to these judgments or

revise them in the way suggested above in order to rationally approach sequential choice

is far-fetched. An agent’s judgment of the instrumental value of a prospect, conditional

upon some event E, should not depend upon what prospects would be realized by the

agent conditional upon E, as required by the preference shift interpretation of resolute

choice. On the other hand, if an agent truly judges one prospect as better than another how

can she be fully rational while acting against that judgment, as the counter-preferential in-

terpretation of resolute choice would have it? On neither interpretation then does resolute

choice constitute an approach to sequential decision making suitable for instrumentally

rational agents.

1.8.3 An Inner Tension?

I have argued that both the Standard Objection and the alternative Resolute Choice Objec-

tion to diachronic tragedy arguments fail. A lurking doubt may remain, however. Some

authors, most notably Lara Buchak and Johanna Thoma, have recently argued that the

principles undergirding these arguments are jointly at odds with one another and that this

incongruence can be recognized without having to endorse either time-slice rationality or

resolute choice theory. While Buchak’s and Thoma’s objections are similar in style, they

make quite different claims and will have to be treated in turn.
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Buchak argues that adoption of a particular approach to sequential choice (e.g. sophis-

ticated or resolute) implies adherence to a corresponding view of the nature of personal

agency. Sophisticated choice, she suggests, assumes a time-slice view of agency on which

all that an agent can influence at any given time are presently available actions, with

future choices being left to future time-slices. Resolute choice, by contrast, assumes, ac-

cording to Buchak, a view of agency on which a planning agent is relatively unified across

time and may adopt genuinely cross-temporal plans of action (so-called ‘diachronic op-

tions’). Buchak further claims that some of the dynamic choice principles needed to run

diachronic tragedy arguments are plausible only on the time-slice view of agency while

others are plausible only on the more unified view of agency. Hence, the conjunction of

these principles is implausible.

There is a certain way of framing diachronic tragedy and related arguments on which

Buchak’s criticism seems to hold water. If diachronic tragedy is thought to reveal irra-

tionality through identifying individual choices that are irrational in light of the agent’s

ultimate values, then the diachronic tragedy argument for the STP fails. None of the

choices taken by the Allais agent in the sequentialized Allais problem is state-wise dom-

inated by other available choices. Only the sequence of choices taken as a whole has

this feature. Hence, I don’t think the liberal standards of evalaution appropriate to a

theory of instrumental rationality can identify any of the Allais agent’s individual choices

as irrational. However, this is not how I have proposed that we understand diachronic

tragedy arguments. A successful diachronic tragedy argument reveals that an agent is

irrational by demonstrating that her action-guiding attitudes are liable to license behavior

guaranteed to result in suboptimal outcomes. This does not mean that any of the individ-

ual choices constitutive of that behavior can be called out as irrational, but it does mean

the agent is ill-equipped to pursue optimal outcomes in sequential choice problems, and

hence cannot be a paragon of instrumental rationality.
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Johanna Thoma worries that diachronic tragedy arguments involve a different sort of

tension. In particular, Thoma suggests that decision theorists face a choice regarding

how to assess an agent’s instrumental rationality. First, one might directly employ as a

standard of evaluation the agent’s attitudes toward uncertain prospects (i.e. the agent’s

act-preferences). On this proposal, if an agent’s behavior ever leads her to realize a

prospect that is against her act-preferences, she would qualify instrumentally irrational.

Second, one might instead take as the standard of evaluation just the agent’s attitudes

toward ultimate consequences (i.e. the agent’s outcome-preferences). On this proposal,

if an agent’s behavior ever leads her to forseeably realize an outcome that is against her

outcome-preferences, she would qualify as instrumentally irrational. Thoma suggests

that when the proponent of Sophistication indicts the resolute Allais agent for choosing

contrary to her act-preferences at the second stage of the sequential Allais problem, she

is assuming the first standard of evaluation. When she indicts the sophisticated Allais

agent for diachronic tragedy by contrast, she is shifting to the second standard of evalua-

tion. Since neither standard of evaluation can allow us to derive both Sophistication and

Sequential Dominance (or Dynamic Optimality), decision theorists interested in charac-

terizing instrumental rationality have no grounds for insisting that agents conform to this

set of principles.

Ultimately, Thoma argues that we should embrace the second standard of evalaution since

the first leaves an agent’s attitudes toward uncertain prospects totally unconstrained. On

the first proposal, Thoma claims, we could not even criticize an agent who chooses an

option state-wise dominated by another, since in doing so she may still be realizing a

prospect she prefers more and it is act-preferences rather than outcome-preferences that

fix a standard of rational evaluation on this view. But, having granted the second proposal,
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we no longer have grounds to criticize the resolute Allais agent in the sequentialized Allais

problem. True, this agent acts contrary to her act-preferences at a time, but she never falls

into diachronic tragedy and so is not, Thoma claims, criticizable in light of her outcome-

preferences.

This line could then be taken as a novel defense of resolute choice. If an instrumentally

rational agent is, as I have claimed, one that never forseeably frustrates her own ends

(i.e. never falls prey to diachronic tragedy) and if the resolute Allais agent never suffers

such a fate, on what grounds can we label the Allais agent instrumentally irrational?

Counter-preferential choice is the key that allows the Allais agent to evade diachronic

tragedy! I reply that a resolute Allais agent may well succeed in avoiding diachronic

tragedy, but this fails to vindicate the coherence of her judgments. On the test defended

here, an agent’s outcome-preferences form the standard of evaluation against which her

act-preferences, and not simply her behavior, may be judged as rationally admissible.

Rationally admissible attitudes are, at minimum, those that never license foreseeably

suboptimal plans of action. It is an inadequate defense of such attitudes to plead that one

can escape their ill effect by acting contrary to their recommendations. Such an argument

is a bit like defending the value of a broken-down car by suggesting that one can always

take the bus. The line in effect concedes that the attitudes in question are rationally

defective.

1.9 Conclusion

I have suggested that we think of normative decision theory as an attempt to formally

characterize instrumental rationality. Rational agents, in this sense, are those whose be-

havior is well-suited for the attainment of their ends. This includes, at a minimum, never
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acting so as to forseeably realize suboptimal outcomes relative to the set of all possible

outcomes achievable by alteration of the agent’s behavior. Further, I have proposed that

an agent’s attitudes are rationally admissible (in the instrumental sense) just in case they

are ones that a rational agent could act upon. In suitable contexts, this motivates the

Sequential Dominance principle and its rejection of tragic attitudes (strong and weak) as

irrational.

Nonetheless, as noted, there are several reasons one might doubt the status of Sequential

Dominance as a fully general rationality postulate. For example, as soon as we coun-

tenance the possibility of infinite decision problems, avoidance of sure-loss becomes an

impossible standard of rationality. Further, the Sequential Dominance principle and the

diachronic tragedy arguments it undergirds assume the existence of a domain of ultimate

outcomes relative to which an agent’s performance may be assessed. For some purposes,

positing the existence of such a domain may be unwarranted or even undesirable. With

these concerns in mind, I have suggested that Dynamic Optimality provides a more gener-

ally applicable standard of instrumental rationality. This standard is, given a rich domain

of consequences, equivalent to Sequential Dominance in the setting of finite sequential

choice problems modelled within the Savage framework. However, it suffers from neither

of the drawbacks of Sequential Dominance highlighted here. Nor are the other recent ob-

jections to dynamic choice principles (e.g. those voiced by time-slice rationality or resolute

choice proponents) compelling against it.

The remainder of my dissertation will turn to exploring the import of Dynamic Optimal-

ity and some related principles in the underexplored context of Richard Jeffrey’s Logic

of Decision and its causalist variants. In particular, Chapter 2 will motivate Jeffrey’s

framework, which takes agents to express preferences over a single Boolean algebra of
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propositions rather than over act functions, and draw out several key advantages it enjoys

over Savage’s. I will then consider how to model sequential choice problems within this

broader framework and suggest that we may define the plans available to an agent in a

given sequential choice problem via a conditional operator that we may neutrally dub

a planning conditional. The remainder of the chapter explores what features this condi-

tional operator must exhibit in order for agents satisfying Jeffrey’s theory of desirability

maximization to also satisfy Dynamic Optimality. As it turns out, a material construal

of the planning conditional leaves desirability maximizers open to Dynamic Optimality

violations, while a construal employing Richard Bradley’s characterization of indicative

conditionals guarantees the Dynamic Optimality of desirability maximizers.

These results notwithstanding, there are serious reasons to doubt the soundness of Jef-

frey’s theory as an account of instrumental rationality. Newcomb problems seem to reveal

that the sort of causal notions intentionally skirted by Jeffrey are essential to a full theory

of rational choice. Chapter 3 considers what the ramifications of Dynamic Optimality are

in the context of causal decision theory. The salience of this investigation is heightened

by the fact that Arif Ahmed and other decision theorists have recently provided several

troubling arguments to the effect that causal decision theory is incompatible with the

avoidance of diachronic tragedy and related ills. I argue that while some of Ahmed’s ar-

guments fail to reveal any significant worry regarding the compatibility of causal decision

theory and Dynamic Optimality, others are far more worrisome. Ultimately, I will argue

that reconciling causal decision theory and Dynamic Optimality requires endorsement of

a radical principle of Autonomy according to which an agent’s judgments of the causal

and evidential import of her own decisions always coincide. While indeed radical, con-

sideration of a rational agent’s deliberational processes and necessary awareness of her

own action-guiding attitudes may nonetheless render the principle acceptable to those

convinced of the normative force of both causal decision theory and Dynamic Optimality.
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Chapter 2

Dynamic Optimality in the Logic of

Decision

With an informal defense of Dynamic Optimality laid out, this second chapter

turns to the matter of formally modelling sequential choice within Jeffrey’s

decision theoretic framework. The first problem that confronts us here is

that Dynamic Optimality concerns the evaluation of plans, while the Logic

of Decision is a theory concerned with ranking propositions according to their

desirability. Thus, to make Jeffrey’s theory applicable to sequential choice,

a bridge principle is needed connecting evaluation of plans with evaluation

of propositions. Relying upon the standard practice of modelling sequential

choice problems via Bayesian decision trees, I show how we can model plans

in a Jeffrey-style framework by employing conditionals that I neutrally dub

‘planning conditionals’. I then investigate the dynamic optimality of Jeffrey’s

theory of desirability maximization in light of a simple material construal of

the planning conditional. While it can be shown that desirability maximization

is dynamically optimal in the restricted class of decision trees that involve only
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choice nodes (or, equivalently, that the relative desirability of plans never re-

verses pursuant to choice nodes in decision trees), a sequentialized version of

Gibbard and Harper’s Transparent Newcomb Problem suffices to bring out the

potential for dynamic suboptimality in a more general setting. This motivates

consideration of alternative construals of the planning conditional. It turns out

that an indicative reading suffices to render Jeffrey’s theory dynamically opti-

mal, given Richard Bradley’s account of indicative conditionals, and is, further,

necessary if Jeffrey’s theory is to satisfy a stronger cousin of Dynamic Optimal-

ity that I dub Preference Stability. However, this interpretation of the planning

conditional has significant implications regarding the evidential bearing of

states of the world upon an agent’s future decisions.

2.1 Introduction

In the context of Savage’s theory, Dynamic Optimality is a powerful principle with wide-

ranging implications. Given its logical connection to axioms like Sequential Dominance,

these implications have been extensively drawn out and explored by decision theorists.

However, the significance of dynamic choice norms has received comparative neglect in

the context of the more general approach to decision theory pioneered by Richard Jeffrey

in his Logic of Decision. While there are notable exceptions,1 this general lack of attention

is surprising given both the philosophical merits of Jeffrey’s framework and the widely

granted appeal of dynamic choice principles.

1[83], for example, discusses Hammond’s arguments against Allais-type preferences from the standpoint
of Jeffrey’s theory, while [1] and [58] offer sequential choice arguments showing that value of knowledge
results fail in the context of Jeffrey’s framework. [77] and [61] also discuss Jeffrey-style theories in the
dynamically relevant context of the self-recommendation of decision theories. More recently, [98] has deployed
a clever sequential choice example to undergird a ‘why ain’cha rich?’ argument against Jeffrey’s theory,
while [2] has argued that causalist variations on Jeffrey’s theory fail to be dynamically consistent.
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This second chapter of my dissertation aims to begin to remedy this situation by identify-

ing conditions under which an agent describable by Jeffrey’s theory will satisfy Dynamic

Optimality. This task requires some stage setting in the form of, first, motivating the need

for Jeffrey’s framework and, second, considering how to model dynamic choice within

this framework. §2 thus rehearses some of the well-known advantages of the Logic of

Decision over Savage’s decision theory and presents the basic framework and content of

Jeffrey’s theory. §3 then explores how to mesh the formalism of dynamic choice theory

with that of the Logic of Decision. The key proposal here will be an identification of plans

in sequential choice contexts with suitable conjunctions of conditionals that I neutrally

dub planning conditionals.

With a suitably general dynamic choice framework in place, I turn to consideration of

the import of Dynamic Optimality in the context of Jeffrey’s theory of desirability max-

imization. An initial positive result lends some support to the rationality of desirability

maximization: within the class of decision problems modelled by decision trees whose

only non-terminal nodes are choice nodes (i.e. decision problems that lack a non-terminal

role for nature) the Dynamic Optimality of Jeffrey’s theory is guaranteed (§4). However,

a turn to more general dynamic choice problems in which an agent’s moves may be in-

terspersed with those of nature invites a more complicated story. Crucial to the Dynamic

Optimality of desirability maximizers in this general context is the interpretation of the

planning conditional. I demonstrate that a simple material construal results in a version

of desirability maximization that is prone to violations of Dynamic Optimality (§5). How-

ever, I subsequently show that an indicative reading suffices to guarantee the Dynamic

Optimality of desirability maximization, assuming the analysis of indicative conditionals

recently defended by Richard Bradley (§6). Further, a key feature of this interpretation of

the planning conditional is necessary if we wish our theory of instrumental rationality to

satisfy a slightly stronger cousin of Dynamic Optimality requiring that an agent’s judg-
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ments regarding the comparative instrumental value of available plans remain invariant

throughout the course of a sequential choice problem, a principle I call Preference Stability.

Appealing as these results may appear with respect to fixing an interpretation of the

planning conditional, I argue in §7 that an indicative reading carries with it strong philo-

sophical commitments regarding how a rational agent may view the evidential bearing

of conditionals involving her future acts upon past states of the world. This foreshadows

consideration of a more radical rationality postulate to be considered in Chapter 3. §8 con-

cludes with a brief summary of the current chapter and a prelude of the next one dealing

with the relevance of causality to the theory of rational choice. If causal decision theorists

are right that evidential decision theory (i.e. Jeffrey’s theory of desirability maximization)

offers a poor account of instrumental rationality to begin with, then a more proper context

in which to explore the import of Dynamic Optimality will be a causalized version of the

Logic of Decision, and this will be the focus of my final chapter.

2.2 Jeffrey’s Theory

2.2.1 Problems for Savage

Savage’s account of rational choice is commonly considered the crowning achievement

of modern decision theory. Granting purely qualitative assumptions about an agent’s

act-preferences (some of which, we have seen, may be underwritten by attractive dy-

namic choice arguments), Savage demonstrates that rational agents are representable as

Bayesians. That is, a rational agent’s act-preferences will reveal a unique probability func-

tion defined over states and a unique (up to positive affine transformation) utility function

defined over outcomes, such that her valuation of uncertain prospects (i.e. Savage acts)
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goes by the expectation of the utility function, computed relative to the probability func-

tion. If we take the probability function to represent an agent’s degrees of belief and the

utility function to represent her degrees of desire, then we have derived a rich mathemat-

ical representation of her internal action-guiding attitudes from the simple starting point

of her pairwise preferences among possible acts. This is indeed a remarkable accomplish-

ment and justifies much of the adulation heaped upon Savage’s theory by subsequent

practitioners of the craft.

Still, even granting the normative force of controversial axioms like the STP, there are

reasons to be dissatisfied with Savage’s account as a fully general theory of instrumental

rationality.2 For one, some of the basic distinctions assumed by the Savage setup appear

artificial and tenuous. Recall that Savage carves up decision problems into three basic

components: acts, states, and outcomes. The latter two types are treated as distinct but

primitive sets, while acts are defined in terms of states and outcomes. An agent’s probabil-

ity measure is defined only over events (i.e. sets of states), while her utility function takes

only outcomes as input. Acts can only be assigned an expected utility. On this theory

then, agents are never represented as having either beliefs about outcomes or about acts,

nor as having desires regarding states. But this need not be so. An agent may well have

beliefs about the items Savage would have us label ‘outcomes’ or ‘acts’ as well as desires

regarding those he would have us label ‘states’.3 In general then, Savage’s approach can

only hope to partially reveal the cognitive and connative attitudes of an agent whose

preferences conform to the Savage axioms.

2The concerns discussed below have been raised by a diverse chorus of voices, largely in philosophy,
including Jeffrey, Wolfgang Spohn, John Howard Sobel, John Broome, Jim Joyce, and Richard Bradley. As
Spohn points out, Savage himself even recognized the worries of state-outcome utility dependence and
act-state probabilistic dependence in [73].

3It should be noted, however, that the claim that rational agents can have beliefs about their own acts is
not without controversy. See [87] and [52].
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Further, since, in Savage’s framework, outcomes are always realized in the context of

some state and since utilities are defined only over outcomes and not, e.g., state-outcome

conjunctions, it is necessary to assume that the desirability of any outcome for the agent

is independent of which state it is realized in. The utility independence of outcomes and

states, however, requires one to take great care in formulating both the outcome- and state-

spaces of a Savage model. Many natural ways of formulating a given decision problem

will commonly run afoul of this criterion.4 At the same time, the structural assumptions of

Savage’s theory require a sort of care in this task of describing outcomes that may push in

an opposite direction. For example, the supposition that the set of acts over which an agent

may express preferences is the set of all functions from states to outcomes requires that

an agent be able to judge the instrumental value of a wild array of acts mapping arbitrary

states to arbitrary outcomes.5 Outcomes and states must then plausibly be characterized

such that any outcome is logically compatible with any state and also with the assignment

of any other outcome to any other state. As noted in the last chapter, this also leads to

difficulties if one wishes to reconcile Allais-like preferences with the STP by introducing

counterfactual content into the description of outcomes, for one would then have to judge

the instrumental value of acts that map states to outcomes in ways that contravene the

contents of the specified outcomes. (Consider: “If it rains, get $100, and if it doesn’t, get [$0

and if it had rained you would have gotten $0 too].”) The required utility-independence

of states and outcomes, as well as concerns about accommodating seemingly sensible

preferences like those of Allais without contravening the STP, thus motivates a highly

fine-grained characterization of outcomes, while the structural assumptions of Savage’s

theory seem ill-suited to accommodate such a characterization.

A further, perhaps more serious worry, regards the fact that Savage derives a single

4This objection to Savage is pressed by, among others, [87].
5This is the infamous Rectangular Field Assumption attacked by [17] and [11], though defended by [24].

54



probability measure defined only over events and never conditioned upon acts. Hence,

Savage’s theory requires an appropriate assumption of act-state independence. For ex-

ample, consider the classic decision problem modelled by Table 1. Here, an agent must

Cancer No Cancer
Smoke -1 2

Don’t Smoke -2 1

Table 2.1: The Smoking Problem

decide whether to smoke or not and considers as possible states Cancer and No Can-

cer. Her utilities for the outcomes associated with the relevant act-state pairs are given.

Savage’s theory appears to recommend smoking here, as this option maximizes expected

utility with respect to any single probability function defined over {Cancer, No Cancer}.

However, such reasoning is famously fallacious as the probability of the states vary with

the agent’s choice of act in this example. That is, the acts and states in this example are

probabilistically dependent. For Savage’s theory to have any plausibility then, it must as-

sume that we have characterized states in such a way that they are suitably independent

of acts.6 This will at the very least require a great deal of care and may even be impossible

in principle in some cases.7

Another possible worry regarding the Savage system concerns its postulation of ulti-

mate outcome and state spaces in the first place, regardless of how the members of such

spaces are characterized (e.g. as utility-independent of states in the case of outcomes or

probabilistically-independent of acts in the case of states). Savage’s characterization of the

sets Z and S effectively casts an agent’s basic attitudes as directed toward atomic points

that are complete in the sense that they leave no room for further refinement. So a Savage

outcome, for example, cannot be partitioned into distinct outcomes with differing utilities,
6Whether the requisite sort of independence is really probabilistic independence or some sort of causal

independence is a matter taken up in the next chapter.
7[45] argues it is quixotic to insist upon act-state independence in general, though some other decision

theorists have attempted to devise algorithms for accomplishing this, see e.g. [33].
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as one might partition non-ultimate outcomes (e.g. have a glass of milk) into possibilities

of different value (e.g. have a glass of fresh milk and have a glass of sour milk). As

noted in the previous chapter, the assumption of an ultimate outcome space is crucial to

the statement of strict dominance principles and their attendant arguments. But is the

existence of ultimate outcomes any sort of requirement of instrumental rationality? Might

an agent not have preferences over an algebra of proximate outcomes that is atomless,

i.e. contains no points or ultimate members? It would be ideal, I think, for a theory of

instrumental rationality to allow for this possibility, which may then motivate a move

away from Savage’s framework.8

A final worry, raised forcefully by Jim Joyce9, concerns the infamous problem of small worlds.

Small world decision problems are more coarse-grained approximations of potentially

vastly complicated ‘grand world’ decision problems that specify every possible way an

agent’s available acts might bear on the world in ways she cares about. Savage defended

the normative plausibility of his axioms in the context of grand world decision problems,

whereas bounded agents can plausibly only hope to actually model small world decision

problems. Hence, there is a problem of justifying the application of standard grand world

principles to tractable small world models. In light of this, it is standardly thought that in

order to provide an adequate account of rational choice a decision theory must be struc-

tured such that the agents characterized by it could reasonably expect their small world

conclusions to approximate their grand world preferences. Joyce has argued that Savage’s

theory lacks a reasonable assurance of such congruence since the expected utility of an act

on the theory is highly sensitive to the partition of states employed to calculate it. Any

theory that aspires to answer the problem of small worlds, Joyce suggests, must exhibit

partition invariance in the sense that an assessment of an act’s value according to the theory

8[23] has argued for adoption of something like Jeffrey’s decision theory on the basis of a rejection of
ultimate outcomes.

9See [45] and [46]. [11] has also endorsed this criticism of Savage.
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may be conducted with respect to more or less coarse-grained partitions of states with

similar effect. As Joyce argues, satisfaction of this constraint is one of the central virtues

of Jeffrey’s alternative approach to decision theory, which we now turn to consider.10

2.2.2 Jeffrey’s Alternative

Richard Jeffrey was among the first philosophers to point out some of these limitations

of the Savage model and to propose an alternative framework for modelling rational

choice, his Logic of Decision.11 The first limitation of Savage’s framework that Jeffrey

aimed to correct was its inability to capture probabilistic dependence between acts and

states. Brian Skyrms offers what is, for our purposes, a particularly telling summary of

the appeal of this move:

[The Logic of Decision] originally was motivated by a desire to deal with cases

in which states are not independent of acts and to do so without causally

loaded concepts. Probabilities are defined on a large boolean algebra, whose

elements are taken to be propositions and whose operations are to be taken

as truth functions. Acts are construed as propositions in this space that can

be directly “made true” by the decision-maker. The inclusion of acts in the

boolean algebra over which probabilities are defined is an innovation which

may provoke varying reactions. However, one may argue that this feature

makes the system attractive for dealing with sequential decision problems.

In such problems, the choice of an option may change its status over time

10One further advantage which Jeffrey seemed to think his theory enjoyed over Savage’s, but which I opt
not to include in my catalogue, involves Jeffrey’s expulsion of the causal notions thought to be implicit in
Savage’s theory in light of the conditional nature of Savage acts. As the emergence of causal decision theory
suggests, however, this alleged advantage is arguably illusory.

11[44].
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from consequence to act to part of the state of the world, and each change

goes with an appropriate updating of subjective probability. ([80], p. 44,

emphasis added.)

Skyrms’ thought regarding the affinity between Jeffrey’s framework and sequential choice

is a very attractive one. Given this, it is remarkable how little attention has been paid to

the import of dynamic choice principles in the context of the Logic of Decision and its

causalist variants.

As Skyrms notes, Richard Jeffrey assumes that rational agents express preferences over

a single algebra, A, of propositions, that is, a collection of propositions closed under the

standard Boolean connectives of negation, conjunction, and disjunction.12 Borrowing no-

tation from the previous chapter, this preference relation may again be written as �, with

asymmetric and symmetric parts denoted � and ∼, respectively. We may think of these

preferences as expressing an agent’s judgments regarding the desirability of the propo-

sitions in the algebra being true. Or, following a famous suggestion recommended to

Jeffrey by Savage, we might also view these preferences as encoding an agent’s attitudes

toward propositions construed as ‘news items’. Intuitively, an agent prefers a proposition

p to a proposition q (i.e. p � q) just in case she would rather learn that p than learn that q.

That is, if p is ‘better news’ than q. For example, I find the proposition stating that I win a

million dollars in the lottery more desirable than the proposition stating that I fail to win

the lottery; I would prefer to learn the former rather than the latter. So I have a preference

for the former over the latter of these two propositions.

Jeffrey suggested that rationality conditions placed upon �would suffice to guarantee its

representability via a desirability function V and probability measure P defined upon A
12Less the contradiction, which Jeffrey excludes from an agent’s preference ranking.
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satisfying:

The Desirability Axiom: For any pair of non-null, mutually exclusive propo-

sitions X, Y ∈ A, V(X ∨ Y) = P(X|X ∨ Y)V(X) + P(Y|X ∨ Y)V(Y).

The desirability of a proposition is then always an appropriately weighted sum of the

desirabilities of the various ways in which it might be true. Note that this axiom entails

that desirability functions exhibit the partition invariance sought by Joyce:

Partition Invariance: V(X) =
∑

i P(Xi|X)V(XXi) for any finite partition {Xi}i ⊆

A.

The qualitative conditions required for such a representation were first discovered by

the mathematician Ethan Bolker, and according to many philosophers constitute either

plausible rationality constraints or relatively harmless technical assumptions.13 In Jef-

frey’s theory then, we have an account of rationality that, in addition to eliminating the

need to invoke ultimate outcomes, doing away with the awkward state-outcome du-

alism of the Savage model, countenancing probabilistic dependence between acts and

states, and satisfying a partition invariance principle, also rests upon a mathematically

elegant representation theorem whose axioms are (to a large extent) normatively intuitive.

Following in the footsteps of Hammond’s treatment of Savage and of the arguments

sketched in Chapter 1, it would be ideal at this point to investigate the extent to which

Bolker’s axioms might be derivable from norms of sequential coherence like Dynamic

Optimality. Alas, I see no apparent way to carry out such a project. The liberal structure

of Jeffrey’s theory, which, for example, postulates preference amongst propositions which

might never feasibly serve as items in a common choice set, renders the prospects for a
13For Bolker’s proofs, see [10]. For a defense of the plausibility of Bolker’s assumptions, see [45] and [11].
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strict derivation of Jeffrey’s theory from dynamic choice norms rather dim. That said,

such norms may still enjoy significant import in this setting if we allow them to act as ad-

ditional rationality principles taken alongside of the standard Jeffrey-Bolker axioms. This

is the path of investigation I will pursue. Assuming Jeffrey’s assumptions to be genuine

requirements of instrumental rationality, what, if anything, does the additional postulate

of Dynamic Optimality add to Jeffrey’s account of rationality?

2.3 Planning Conditionals

If we hope to explore the significance of Dynamic Optimality in the Logic of Decision,

it is incumbent upon us to first precisify the application of Jeffrey’s theory to problems

of sequential choice. We have already reviewed the basics of dynamic choice theory in

the preceding chapter and only a few key adjustments will be required to harmonize that

framework with the Logic of Decision. Importantly, we will alter the definition of decision

trees as follows:

Definition 7. A decision tree is a seven-tuple 〈N,X1,X2,X3,N+(·),n0,S(·)〉, where:

i N is a finite set of nodes, partitioned into X1, X2 and X3.

ii X1 is the set of choice nodes.

iii X2 is the set of natural nodes.

iv X3 is the set of terminal nodes.

v N+ : N→ P(N) is the immediate successor function which satisfies:

(a) ∀n ∈ N,n < N+(n)
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(b) ∀n ∈ N,N+(n) = ∅ iff n ∈ X3

(c) ∀n,n′ ∈ N,N+(n) ∩N+(n′) , ∅ iff n = n′

vi n0 is the initial node and satisfies ∀n ∈ N,n0 < N+(n)

vii S : N→A is a mapping that assigns to each node a proposition such that,∀n ∈ N, {S(n′)|n′ ∈

N+(n)} is a partition of S(n).14

Note the few discrepancies between this definition and the characterization of decision

trees offered previously. The set-theoretic events formerly associated with nodes are now

replaced with propositions, i.e. members of A. Learning is now possible pursuant to

choice nodes as well as natural ones. And, lastly, gone are the contingent consequence

functions associated with terminal nodes; the elements of A now suffice as (proximate)

outcomes. Aside from these modest alterations, the characterization of decision trees is

left as before.

Recall now that, according to the dynamic choice framework developed in the previous

chapter, rational agents facing sequential choice problems adopt attitudes towards avail-

able plans, construed as sets of terminal nodes in appropriately structured decision trees,

whereas in the Logic of Decision, rational agents take attitudes towards propositions. To

make Jeffrey’s theory applicable to sequential choice then, a propositional construal of

plans is called for. A natural proposal is to identify plans with suitable conjunctions of

act propositions and partitioning conditionals.15 (E.g. “First, I will apply for the loan; if

approved, I will buy that new car; if denied, I will renew my bus pass.”) To make this

proposal precise, we can recursively define the plans available to an agent at a particular

14Again, this definition closely aligns with the formulation of decision trees found in [36] and [22], albeit
now adjusted to the setting of the Logic of Decision. Given the background algebra, A, I will assume an
unrestricted domain of decision trees.

15 A partitioning conditional is a conjunction of conditionals whose antecedents form a logical partition.
See [11], p. 122-4.
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node n of a Bayesian decision tree T (a set I will dub ‘Ω(T,n)’ following standard notation).

As our trivial base case, suppose n is a terminal node in T. Then the “plan” available at n

will simply be the proposition capturing the planning agent’s information state at n. Now

supposing that n is a choice node, we can define the set of plans available at n as the set

of the various conjunctions of acts available at n with plans available at n’s successors.

Finally, if n is a natural node, we can associate the set of plans available at n with a set

of partitioning conditionals whose antecedents are given by the possible propositions an

agent might learn at n and whose consequents are possible plans she might implement

given receipt of that information. Succinctly:

Definition 8. Let n be a node in a decision tree T. The set of plans available at n in T,

denoted Ω(T,n), is defined recursively as follows:

1. If n is a terminal node, then Ω(T,n) = {S(n)}.

2. If n is a choice node, then

Ω(T,n) = {S(n′) ∧ π : n′ ∈ N+(n), π ∈ Ω(T,n′)}.

3. If n is a natural node, then

Ω(T,n) =

∧
i

[S(ni)→ π(ni)] : ni ∈ N+(n), π(ni) ∈ Ω(T,ni)

 .
We can also define plan continuations in this setting as follows:

Definition 9. Let n be a node in a decision tree T and let p ∈ Ω(T,n). Suppose n′ is a node

succeeding n along some branch of T. The continuation of p at n′, written ‘p(n′)’, is the

member of Ω(T,n′) consistent with p. If there is no such member, p does not make arrival

at n′ possible and p(n′) is left undefined.
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Throughout we will assume that desirability maximizers judge admissible at a node n in

a tree T whichever plans in Ω(T,n) are of maximal desirability, i.e. p ∈ D(Ω(T,n)) if and

only if Vn(p) ≥ Vn(p′) for all p′ ∈ D(Ω(T,n)), where Vn captures the agent’s desirabilities at

node n. We will also assume that the credences and desirabilities of an agent each evolve

by conditionalization as she moves through the stages of a sequential choice problem.16

The trick going forward is saying just how the conditional operator, ‘→’, which I will refer

to as a planning conditional, ought to be understood. An initial suggestion would be to take

the planning conditional as a material conditional. On this reading, a plan can be identified

with the disjunction of the propositions that its full implementation could possibly yield

as total evidence. There are admittedly some drawbacks to this suggestion. Plans so

construed will often fail to form a partition and leave undetermined what choices would

be made by an agent at the counterfactual decision points she never reaches in a sequential

choice problem, an intuitively incorrect result when considering planning conditionals.

Nonetheless, the material construal of the planning conditional avoids the complexities

of non-truth functional semantics and is, in my estimation, an adequate model for a wide

range of cases in which the desirability of plans interpreted truth functionally may be

expected to coincide roughly with their desirability under more proper interpretations.

Thus, in my view, the Dynamic Optimality of desirability maximization under a material

construal of the planning conditional is an excellent launching point for an investigation

into the significance of Dynamic Optimality in the context of the Logic of Decision.

16If na preceeds nb in a decision tree, then updating one’s desirabilities by conditionalization means that
Vnb(x) = Vna(x|S(nb)) = Vna(xS(nb)) − Vna(S(nb)). See [11], p. 97, for more on Conditional Desirability.
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2.4 Dynamic Choice without Nature

As we investigate the dynamic optimality of desirability maximization, it is convenient to

begin by considering a particularly simple class of decision problems, namely, those that

lack any non-terminal role for nature to play. That is, we first consider the class of decision

problems that can be modelled by decision trees in which all non-terminal nodes represent

points of decision, and hence in which nature resolves none of the agent’s uncertainty

prior to the problem’s conclusion. In such problems, an agent only learns whatever she

opts to teach herself.

It should be welcome news for the proponent of Jeffrey’s decision theory that the dynamic

optimality of desirability maximization is guaranteed within this class of problems. In

particular, we can prove:

Proposition 2. For any decision tree T, if n is a choice node in T and n′ ∈ N+(n), then Vn(p) ≥

Vn(p′) iff Vn′(p(n′)) ≥ Vn′(p′(n′)) for all plans p, p′ ∈ Ω(T,n) consistent with S(n′).

Proof. Let T be a decision tree and n a choice node in T. Suppose that:

(1) Vn(p) ≥ Vn(p′)

Then, assuming p, p′ are consistent with S(n′), where n′ ∈ N+(n):

(2) Vn(pS(n′)) ≥ Vn(p′S(n′))

By definition of conditional desirability:

(3) Vn(p|S(n′)) ≥ Vn(p′|S(n′))
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By conditionalization:

(4) Vn′(p) ≥ Vn′(p′)

By the equivalence of plans and their continuations following choice nodes:

(5) Vn′(p(n′)) ≥ Vn′(p′(n′))

�

This proposition, which holds independently of how we opt to construe planning con-

ditionals, establishes that the relative desirabilities of plans never shift following choice

nodes. The only possible opportunities for revision of previously adopted plans on the

part of desirability maximizers arise following new disclosures of information by nature.

Thus, if one plan is preferred to another at a choice node and both are defined at an im-

mediately subsequent node, the continuation of the initially favored plan will continue to

look better than the continuation of the initially disfavored plan at the subsequent node.

To get an intuitive sense for why this is the case, note that, at any choice node, a plan spec-

ifies a particular choice to make at that node, and the significance of making this choice is

already factored into the desirability maximizer’s appraisal of the plan. Hence, the act of

initiating the plan in question by selecting the option it recommends at that choice node

can have no tendency to engender a preference reversal among plans. Thus, the only

possible opportunities for such reversals arise following new disclosures of information

by nature.

Proposition 1 clearly entails that desirabilty maximization satisfies Dynamic Optimality

within the restricted class of decision problems modelled by decision trees lacking natural

nodes. For, suppose that a plan p is judged optimal (i.e. is of maximal desirability) at the
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start of such a decision tree. Since, according to Proposition 1, the relative desirability of

plans never flips pursuant to choice nodes, p will persist in appearing maximally favorable

throughout the problem in question. Hence, it is dynamically feasible. Hence, all ex ante

maximal plans are also dynamically feasible, just as required by Dynamic Optimality.17

2.5 Sequential Transparent Newcomb

So far, so good for the desirability maximizer. If sequential choice were simply a matter of

making decisions across time, we could end our interrogation of Jeffrey’s theory here. But

not all dynamic choice problems are so simple. Generally, an agent will learn more than

her own choices over the course of implementing a cross-temporal plan of action. She is

also likely to learn various other facts about the world that may impact the desirabilities

of her options. Allowing for such learning, is the dynamic optimality of EDT still assured?

Before we can answer this question, note that once we countenance choice problems of the

sort modelled by Bayesian decision trees involving natural nodes, the implementation of

a plan is no longer guaranteed to terminate in an antecedently known information state.

This renders our interpretation of the planning conditional relevant. As noted above, our

first pass at interpreting the planning conditional will involve treating it truth-functionally

as a material conditional. Taking the planning conditional in this way, a simple example

suffices to show that evidentialists are liable to exhibit dynamic suboptimality.18

17In proving this proposition in [71], I assumed a finite base set of possible worlds and construed propo-
sitions as sets of such worlds, which, as the current proof shows, was unnecessary and resulted in a slightly
less elegant proof.

18The following thought experiment derives from a story suggested to me by Brian Skyrms in personal
correspondence. I have simplified that original story in light of helpful comments from an anonymous
reviewer. I later also found that a similar argument is discussed by [7], though the use he puts it too is
slightly different.
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The problem is a sequentialized variant of the Transparent Newcomb problem that we may

dub Sequential Transparent Newcomb (STN).19 We begin by supposing that you are offered

the opportunity to face the standard Transparent Newcomb problem. If you reject the

offer, you receive nothing. If you accept, a predictor will place a million dollars in your

bank account if and only if she predicts that you will reject her subsequent offer of one

thousand dollars. The balance of your bank account is transparent to you at all times.

n0

z5
A

n1

n3
z4B

z3B
K

n2
z2B

z1B

K

A

Figure 2.1: The Sequential Transparent Newcomb Problem.
S(n0) = W, S(z1) = AKB, S(z2) = AKB, etc.

Let A be the proposition that you take the predictor up on her offer to play, B the propo-

sition that you accept her thousand dollar offer, and K the proposition that the predictor

predicts B. We assume that you know the structure of the problem, only care about your

wealth level, and value money linearly. The problem can be depicted in the tree T1, shown

in Figure 1.

For the purposes of the problem at hand, the propositions associated with the terminal

nodes of T1 may be treated as the atoms of an algebra over which your credences and

desiribilities are initially spread. So defining P and V over these propositions suffices to

fix the values of these functions for all other propositions of interest to us as well. Suppose
19The static version of Transparent Newcomb was first discussed by [32]. [77] and [61] employ the

example to argue that EDT can fail to be self-recommending.
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that your initial values and credences are defined by:

P0 V0

S(z1) .014 1,001,000
S(z2) .7 1,000,000
S(z3) .14 1,000
S(z4) .07 0
S(z5) .076 0

Next, note that at the outset of STN there are five plans available to you:

(1) Π1 := A(K→ B)(K→ B)

(2) Π2 := A(K→ B)(K→ B)

(3) Π3 := A(K→ B)(K→ B)

(4) Π4 := A(K→ B)(K→ B)

(5) Π5 := A

We can show that Π1 is V0-maximal and so will be ex ante favored. Noting that Π1 is

logically equivalent to B (i.e. S(z2) ∨ S(z4)), we compute its value:

V0(B) =
∑
w∈B

P0(w|B)V0(w)

=
∑
w∈BK

P0(w|B)V0(w) +
∑
w∈BK

P0(w|B)V0(w)

= 1, 000, 000 ×
∑
w∈BK

P0(w|B) + 0

= 1, 000, 000 × P0(K|B)

= 909, 090.90
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In contrast, similar computation reveals the initial values of the other available plans to

be substantially lower:

(1) V0(Π2) = 91, 909, 09

(2) V0(Π3) = 833, 499.6

(3) V0(Π4) = 166, 833.3

(4) V0(Π5) = 0

Trusting that the skeptical reader may easily verify these values for herself, we may con-

clude that playing the predictor’s game and then rejecting her thousand dollar offer is the

V0-maximal plan in STN.

It is evident, however, that desirability maximization will recommend a change of heart

to any agent that heeds its prescriptions and decides to play the game. After the truth

value of K has been revealed, opting to grab the extra thousand carries no bad news,

and hence accepting the money will be strictly preferred. But not accepting the money

is the continuation of the plan that we observed above was initially most favored. What

is V0-maximal is neither V2− nor V3-maximal. The desirability maximizer finds herself

trapped in dynamic suboptimality, for the plan she judged ex ante optimal is not among

those that are feasible for her.

This then suffices to establish:

Proposition 3. If the planning conditional is the material conditional, desirability maximization

is not dynamically optimal.
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This result is rather to be expected. The material construal of the planning conditional

makes plans out to be disjunctions, and one disjunction, say, A ∨ B, can easily be more

desirable than another, say, C∨D, even if the individual disjuncts (i.e. plan continuations)

are such that C is preferable to A and D to B. (This may be the case, for example, if B

is more desirable than C, and A ∨ B is sufficiently good evidence of B while C ∨ D is

sufficiently good evidence of C.)20

All of this assumes, of course, the material reading of the planning conditional. As noted

above, this assumption may be undesirable in some contexts, which invites the question:

Might matters look different if we were to equip planning conditionals with a more ade-

quate non-truth-functional semantics? This is the question to which we now turn.

2.6 Bradley Indicatives

One natural alternative to the material interpretation of the planning conditional would

be to read the planning conditional as an indicative of the sort employed by Bradley to

model Savage acts. It turns out that this construal of the planning conditional yields a

more positive picture regarding the dynamic consistency of desirability maximization, as

I hope to show below. Before arguing for this, however, it may be worth motivating the

idea that planning is an indicative, as opposed to subjunctive, enterprise at a relatively

informal level.21

20[71] argues for a version of this proposition stated in terms of dynamic consistency and puts this
argument forward in the context of [2]’s argument that causal decision theory leads to dynamic inconsistency.
This result shows that the same is true for evidential decision theory on a material construal of planning
conditionals.

21Note that I in no way mean here to deny the importance of subjunctive supposition in the context of
rational planning and decision making. Causal decision theory, for example, mall well be right to view
the practical merits of a plan in terms of its expected desirability under the subjunctive supposition of its
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An indicative supposition involves supposing that some proposition is true as a matter of

fact. This mode of supposition is commonly contrasted with subjunctive or counterfactual

supposition, which involves considering what the world would be like if some proposition

were to be true (without fixing whether or not the supposition is actually true). Examples

are the surest way to bring out this contrast. Suppose, to employ a planning context, that

you are considering the possibility that you will be offered a job at a prestigious law firm

and are evaluating the desirability of accepting such an offer, under the supposition that it

is made. Suppose further that you suffer from terribly low self-esteem and hence are very

confident that you will not be offered the position. Moreover, you think that, were you,

shockingly, to learn that you had been offered the job, the most likely explanation would

be that the job was not as grand as you had supposed and therefore not worth accepting.

Under these circumstances, you may judge accepting the offer as desirable under the

subjunctive supposition of its being offered but not under the indicative supposition of

its being offered. To put the matter in terms of conditionals, and letting 7→ represent the

indicative and� the subjunctive, you prefer (Offer 7→ NotAccept) to (Offer 7→ Accept),

while simultaneously preferring (Offer� Accept) to (Offer� NotAccept).

This example hopefully brings out why planning conditionals are best understood as

indicative rather than subjunctive. In forming a contingency plan, an agent is considering

what to do if, as a matter of fact, various contingencies are found to obtain. When I

consider what to do if I am offered the job, I am considering what to do if I in fact learn

that I am offered the job. Strictly counterfactual worlds are of no concern to me, and the

counterfactual conditional provides me no direct practical guidance. In forming a plan, I

am determining how to respond to the different bodies of evidence I might be exposed to,

implementation. What I deny is simply that the planning conditional itself should be viewed subjunctively.
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and not how to respond to counterfactual possibilities, which is impossible for an agent

located in one world to do. Hence, an indicative reading seems most appropriate given

the role planning conditionals are meant to play in the practical deliberation of agents.

Whatever the merit of these considerations, a key factor favoring an indicative reading of

the planning conditional, from the perspective of the Logic of Decision, will prove to be its

capacity to ensure that desirability maximizers satisfy Dynamic Optimality. To establish

this, I will rely on the rich formal account of the pragmatics of indicative conditionals

recently defended by Richard Bradley.22 In particular, I will assume that rational attitudes

toward indicative conditionals exhibit two properties proposed by Bradley.

The first condition is called the Indicative Property ([11], p. 117):

Definition 10. A conditional 7→ has the Indicative Property with respect to a rational desirability

function V just in case: For all propositions α, β, γ, V(α 7→ β) ≥ V(α 7→ γ) iff V(αβ) ≥ V(αγ).

Why should this condition hold of indicative conditionals? As Bradley notes, indicative

conditionals α 7→ β and α 7→ γ each purport to tell us what is the case if α is true as a matter

of fact, but they are silent on what is the case if α is false. Hence, the relative desirability

of these conditionals should be settled by their relative desirability under the supposition

that α is true, which amounts to making a comparison of the conjunctions αβ and αγ.

A second condition that Bradley posits as a marker of rational attitudes toward indicative

conditionals is an Additivity principle:

Definition 11. A conditional 7→ satisfies Additivity with respect to a rational desirability func-

tion V just in case, where {αi}i is any finite partition of propositions: V(
∧

i(αi 7→ βi)) =
∑

i V(αi 7→

22See especially chapter 7 of [11].
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βi).

Additivity is actually a logical consequence Bradley derives from a more basic principle

he posits called Value Independence, according to which orthogonal indicative conditionals

are desirabilistically independent.23 The intuition Bradley identifies behind this postu-

late is simply that the desirability of one proposition on the matter-of-fact supposition of

another should not depend upon what is the case if the supposition is false, for we have

supposed it to be factual.24

Granting that Bradley has correctly characterized indicative conditionals via the Indicative

Property and Additivity, we may define:

Definition 12. The conditional 7→ is an indicative if it satisfies the Indicative Property and

Additivity.

It is now possible to prove that if planning conditionals are indicatives (that is, if a rational

agent treats them as such by having a value function that conforms to the Indicative

Property and Additivity), then the dynamic optimality of desirability maximization in a

planning context is guaranteed.

Proposition 4. If the planning conditional is an indicative, then desirability maximization is

dynamically optimal.

Proof. Let a non-terminal node n in an arbitrary Bayesian decision tree T be fixed. Suppose

that Π is a desirability maximal plan at n. It would suffice to convince ourselves that for

any successor to n, say n′, Π(n′) is either undefined (i.e. Π did not make arrival at n′

23Two conditionals are orthogonal if their antecedents are mutually exclusive.
24I should emphasize that for subjunctive conditionals Bradley is adamant that both the Indicative Prop-

erty and Additivity become highly implausible. So these properties are really taken by Bradley to govern
only indicative conditionals.
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feasible) or desirability maximal at n′. For, if this were true, then the feasibility of initially

maximal plans would be guaranteed. So, let n′ be a successor to n and let Π(n′) be defined.

The node n is either a choice node or a natural node. If n is a choice node, Π(n′) is optimal

at n′, because choice selections never result in desirability reversals over plans (by Lemma

1 above). So we are left to consider the case where n is a natural node. In this case, Π is

of the form ∧i[S(ni) 7→ Π(ni)], where the ni are the possible successors to n. By Additivity,

we know that:

(1) Vn(Π) = Vn(∧i[S(ni) 7→ Π(ni)]) =
∑

i Vn(S(ni) 7→ Π(ni))

But this means that, for all Π′ ∈ Ω(T,n):

(2) Vn(S(ni) 7→ Π(ni)) ≥ Vn(S(ni) 7→ Π′(ni))

For, if any such inequality failed to hold, we could alter Π to form a new plan Π∗ exactly

similar to Π except that it substitutes the more preferred conditional for the less. By

Additivity, this would generate a more desirable plan, contradicting the assumption that

Π is optimal at n. But then, by the Indicative Property, (2) entails that, for all Π′ ∈ Ω(T,n):

(3) Vn(S(ni) ∧Π(ni)) ≥ Vn(S(ni) ∧Π′(ni))

Subtracting Vn(S(ni)) from both sides yields, by Conditional Desirability:

(4) Vn(Π(ni)|S(ni)) ≥ Vn(Π′(ni)|S(ni))

Hence, for all ni ∈ N+(n) (and thus n′, in particular):

(5) Vni(Π(ni)) ≥ Vni(Π
′(ni))
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This completes the proof of the proposition. �

Therefore, the features Bradley ascribes to indicatives are sufficient to ensure that a plan

of maximal desirability at the outset of a sequential choice problem will continue to enjoy

maximal desirability throughout the course of its implementation, and hence that initially

maximal plans are a subset of dynamically feasible plans, i.e. that Dynamic Optimality

holds.

We can also prove a partial converse. Any agent whose attitudes towards planning

conditionals violate the Indicative Property is liable to violate a stronger cousin of Dynamic

Optimality that we might call Preference Stability.

An agent is preferentially stable in a decision tree T just in case, for all nodes na and nb in T

such that na precedes nb along some branch of T, if p, p′ ∈ Ω(T,na), p � p′, and p, p′ both

make arrival at nb possible, then p(nb) � p′(nb). An agent is preferentially stable tout court

just in case the agent is preferentially stable in all decision trees.

While this principle requires more than Dynamic Optimality, it is not without plausibility

as a rationality constraint. There are at least two ways one might motivate it. First, taking

desirability maximization as a choice policy, one might note that even if a dynamically

optimal agent is practically guaranteed to implement whatever plan she initially sets her

mind to, we might still hope that her rationality would minimize the losses associated with

any hypothetical deviations from an optimal plan. For example, if a rational agent initially

prefers a plan A to a plan B to a plan C, then conditional on failing to implement A, one

might expect that a rational agent would still implement B over C, and the preservation

of the agent’s initial preference for B over C may support this. The trembling hand of a

rational agent need not be blind. Second, desirabilities reflect judgments about the relative

value of propositions considered as news items and these judgments plausibly ought to
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remain stable concerning plans, absent changing information about the structure of the

planning problem an agent faces. If plan B is better news than plan C ex ante, it ought

to remain so, conditional upon the receipt of information that plans B and C already take

into account.

Proposition 5. If the planning conditional fails to satisfy the Indicative Property with respect to

a given desirability function, then an agent with that desiribility function will be preferentially

unstable.

Proof. Suppose that an agent’s desirability function fails to conform to the Indicative Prop-

erty with respect to the planning conditional. That is, let V be a desirability function and

α, β, γ be propositions such that: V(α → β) ≥ V(α → γ) while V(αγ) ≥ V(αβ). To show

that an agent with values represented by this desirability function is liable to preference

instability it suffices to construct a decision tree in which the agent will be preferentially

unstable. To do so, we will first consider the case where β and γ are incompatible propo-

sitions and then generalize.

Let z be the proposition expressing that α is true while β and γ are false, i.e. z = α(β ∨ γ).

Then, supposing β and γ are incompatible, the following decision tree suffices to bring

out the claimed preference instability:25

n0

x3α

n1

x2z

x2
γ

x1β

α

Figure 2.2: T2, a decision tree.

25If β and γ suffice to partition α, z will be a contradiction and can be pruned from the tree.
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At the initial node n0, there are three plans available to an agent facing this decision

problem, corresponding to the conditionals: α → β, α → γ, α → z. We know, by

assumption, that the plan α→ β is preferred to the plan α→ γ. But at n1, this preference is

guaranteed to reverse conditional upon reaching n1. To see this, note that the continuation

of α→ β at n1 is αβ, while the continuation of α→ γ is αγ. We know, by assumption, that:

(1) Vn0(αβ) < Vn0(αγ)

But this implies that:

(2) Vn0(αβ) − Vn0(α) < Vn0(αγ) − Vn0(α)

This is, by definition:

(3) Vn0(αβ|α) < Vn0(αγ|α)

Assuming that updating of desirabilities goes by conditionalization, we then have:

(4) Vn1(αβ) < Vn1(αγ)

This suffices to establish the violation of Preference Stability on the assumption thatβγ = ⊥.

If β and γ are not incompatible, however, T2 will be an ill formed decision tree. Nonethe-

less, we may assume that this is not the case since an arbitrary violation of the Indicative

Property always implies a violation of the Indicative Property with respect to a pair of

consequents that are mutually exclusive (assuming closure of the agent’s alegebra un-

der the relevant logical operations)26 and we can thus take β and γ to be such a pair. To

26The closure of the algebra under the Boolean connectives is of course standard; further closure under
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prove that this is the case, suppose that β and γwere not incompatible. We then have three

cases to consider: (i) β � γ (ii) γ � β and (iii) γ 2 β and β 2 γ. We handle these cases in turn.

(i) Suppose that β � γ. Define γ∗ = γβ. Clearly, β and γ∗ are incompatible. We argue that

there is an Indicative Property violation with respect to α and these two propositions, i.e.

V(α→ β) ≥ V(α→ γ∗) while V(αγ∗) ≥ V(αβ). Since β entails γ, α→ γ is equivalent to the

disjunction of α → γ∗ and α → β. We then have, by the Jeffrey-Bolker mixing law, that

V(α→ γ) is a weighted mixture of V(α→ γ∗) and V(α→ β), and since we know it is less

than V(α → β), it must also be that V(α → β) > V(α → γ∗). However, similarly, αγ must

be a weighted mixture of αβ and αγ∗. Thus, from the assumption that V(αγ) > V(αβ), we

obtain that V(αγ∗) > V(αβ).

(ii) Suppose that γ � β. Define β∗ = βγ. Clearly, β∗ and γ are incompatible. We argue that

there is an Indicative Property violation with respect to α and these two propositions, i.e.

V(α → β∗) ≥ V(α → γ) while V(αγ) ≥ V(αβ∗). Since γ entails β, α → β is equivalent to

the disjunction of α → γ and α → β∗. We then have, by the Jeffrey-Bolker mixing law,

that V(α→ β) is a weighted mixture of V(α→ γ) and V(α→ β∗), and since we know it is

greater than V(α→ γ), it must also be that V(α→ β∗) > V(α→ γ). However, similarly, αβ

must be a weighted mixture of αβ∗ and αγ. Thus, from the assumption that V(αγ) > V(αβ),

we obtain that V(αγ) > V(αβ∗).

(iii) Suppose that γ 2 β and β 2 γ, while not being incompatible. Define β∗ = βγ and

γ∗ = γβ and δ = βγ. We then know that V(α→ (β∗ ∨ δ)) > V(α→ (γ∗ ∨ δ)), which implies

the planning conditional is tied to our implicit assumption that the domain of decision trees an agent may
face is unrestricted, i.e. any tree-like graph whose nodes are mapped to factual propositions in such a way
that the propositions attached to the successors of any given node partition the proposition associated with
that node counts as a decision tree.
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that V((α→ β∗) ∨ (α→ δ)) > V((α→ γ∗) ∨ (α→ δ)). By the Jeffrey-Bolker mixing law, we

get that V(α → β∗) > V(α → γ∗). However, similarly, V(α(β∗ ∨ δ)) < V(α(γ∗ ∨ δ)), which

implies that V(αβ∗ ∨ αδ) < V(αγ∗ ∨ γδ). By the Jeffrey-Bolker mixing law, we get that

V(αβ∗) < V(αγ∗).

�

2.7 Future Autonomy

The forgoing argument has revealed that satisfaction of attractive dynamic choice norms

like Dynamic Optimality and Preference Stability is, in the context of the Logic of Decision,

closely tied to an interpretation of planning conditionals as indicatives. For those of us

that find these principles normatively compelling, this speaks heavily in favor of such

a construal of planning conditionals, assuming of course that Jeffrey’s theory provides

a sound account of instrumental rationality in the first place. It is worth drawing out

further, however, what such a commitment amounts to philosophically. Upon reflection,

requiring an interpretation of planning conditionals can be seen to place strong restric-

tions upon an agent’s probability function. In particular, it amounts to requiring that an

agent never view her conditional performance of future acts as evidence for the states

upon which their performance is conditioned.

Consider two planning conditionals with a shared antecedent consisting of a state-

proposition and distinct consequents consisting of competing act-propositions that could

be performed conditional on learning the truth of the antecedent. We might denote them

‘S 7→ A1’ and ‘S 7→ A2’. Given the indicative property, the first is preferred to the second by

a desirability maximizer only if SA1 is preferred to SA2. But this condition might well fail
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if the conditionals in question could provide varying evidence in support of their shared

antecedent S. For example, if S is a negative proposition that an agent would really like to

turn out false, then S 7→ A1 might well have higher desirability than S 7→ A2, even granting

that V(SA2) ≥ V(SA1), provided that the former conditional supplies significantly stronger

evidence against S than the latter.

This is essentially what occurred in the Sequential Transparent Newcomb problem. While

taking the thousand is preferred to refusing it after one has learned the contents of the

opaque box, behaving in accord with this preference is antecedently strong evidence in

favor of the bad news that the opaque box is empty and, thus, the plan that involves

turning down the thousand when offered is actually ex ante optimal. By insisting that

planning conditionals be treated as indicatives, the advocate of desirability maximization

is effectively arguing that cases like STN are impossible for rational agents to face. On this

view, a rational agent will not take her present plans (codified as planning conditionals) to

supply her with evidence for or against the states upon which her plans are conditioned.

Let’s dub this claim the principle of Future Autonomy.

Future Autonomy: If S 7→ A is a planning conditional for a given agent, then

P(S|S 7→ A) = P(S), where P is the agent’s probability measure.

This principle follows from treating planning conditionals as indicatives given Bradley’s

general treatment of the pragmatics of indicative conditionals on which P(α(α 7→ β)) =

P(α)P(α 7→ β), for any propositions α, β ∈ A.

This view strikes me as perfectly tenable, though it may appear radical to some. In

fact, I will suggest in the next chapter that it does not go quite as far as the proponent of

Dynamic Optimality ought to in restricting an instrumentally rational agent’s deliberative
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credences regarding the evidential significance of her acts. Still, it is a strong principle

and a proponent of Dynamic Optimality might well wish to resist it as a rationality

principle. Alas, such resistance seems largely futile outside of abandoning desirability

maximization as a theory of instrumental rationality. Moreover, even if one were to take

this route, the leading competitor to Jeffrey’s theory, causal decision theory, offers no safe

harbor to flee to in this storm, as the marriage of causal decision theory and Dynamic

Optimality motivates the even stronger autonomy principle previously referenced. One

might be tempted instead to seek refuge in one or another of the decision theories that

have recently come out of the computer science community, including the ‘functional

decision theory’ of Yudkowsky and Soares or Yudkowsky’s ‘timeless decision theory’.27

Certainly, the attractive dynamic properties of these theories constitute a main source of

their appeal. Still, insofar as they aspire to characterize instrumentally rational choice, they

appear to make absurd recommendations in cases like Sequential Transparent Newcomb,

where they would recommend forgoing the sure thousand, regardless of what is observed

in the opaque box!28 Better to say, I think, that adherence to Dynamic Optimality comes

at the price of granting some form of internal epistemic independence between an agent’s

conditional plans and the obtaining of the corresponding conditioning states of the world.

2.8 Conclusion

The Logic of Decision overcomes various shortcomings of the standard models of rational

choice popular among economic decision theorists (e.g. Savage’s) and exhibits a range

of technical virtues that recommend it as a formal framework for explicating instrumen-

tal rationality. These virtues have been widely recognized among philosophers, leading

to the preeminent position currently enjoyed by Jeffrey’s decision-theoretic framework

27[99], [100].
28See p. 22-3 of [99].
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within philosophical decision theory. At the same time, ever since Hammond’s deriva-

tion of Bayesianism within a Savage-style framework29 from instrumentalist dynamic

choice norms, the appeal of principles akin to Dynamic Optimality has been commonly

recognized, even as a serious investigation of these norms in the context of Jeffrey-style

decision theories has been neglected. An exploration of the significance of dynamic choice

principles in the context of the Logic of Decision has thus been long overdue.

This chapter has sought to initiate this project and, in the process, reached several re-

sults worth highlighting. First, I have argued that plans can be naturally identified with

propositions if we introduce a conditional operator into the algebra’s space of logical

connectives to be interpreted as a planning conditional. Second, the prospects for Jeffrey’s

theory of desirability maximization to satisfy Dynamic Optimality hinge upon the sort

of attitudes rational agents may adopt with respect to planning conditionals. On a sim-

ple truth-functional understanding of the planning conditional as a material conditional,

there is no guarantee that desirability maximizers will satisfy Dynamic Optimality, a point

brought home by the Sequential Transparent Newcomb problem. This is so because, on

this reading of the planning conditional, nothing forbids preference reversals amongst

plans pursuant to new disclosures of information by nature, even though such reversals

are indeed impossible for desirability maximizers pursuant to the agent’s selection of

her own acts, regardless of the interpretation of the planning conditional. Finally, an

alternative construal of the planning conditional as an indicative conforming to Bradley’s

characterization of matter-of-fact conditionals does manage to secure Dynamic Optimal-

ity as a consequence of desirability maximization.

Adopting this interpretation of planning conditionals, however, carries with it signifi-

29Or, more strictly, an Anscombe-Aumann framework, [6].
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cant commitments. In particular, it amounts to affirming Future Autonomy. That is,

one must hold that a rational desirability maximizer is bound to view her available con-

tingency plans as evidentially irrelevant to the obtaining of the contingencies they plan

for. The agent is autonomous in that she can never read any information regarding which

facts about the world she will learn off of which acts she will perform in light of those facts.

Interesting as I believe these results are, they constitute merely the initiation of a nascent

research program investigating the significance of dynamic choice norms within Jeffrey-

style decision theories. There is still much work to be carried out in such a program.

As a critical next step, attention ought to be directed toward the dynamic optimality (or

lack thereof) of causalist variants of the Logic of Decision, i.e. causal decision theory. It

has long been recognized, its many virtues notwithstanding, that the Logic of Decision

faces serious obstacles as an account of rational choice due to its self-conscious neglect of

the relevance of causal factors to sound decision making, and, hence, that some sort of

causalized version of Jeffrey’s theory is needed. It is not clear, however, that the central

versions of causal decision theory on offer are compatible with Dynamic Optimality and

other plausible choice norms. In fact, a number of authors have recently argued that

the dynamic choice setting raises insuperable difficulties for causalist accounts of rational

choice.30

My final chapter will attempt to rebut some of these charges against causal decision

theory and reconcile the causal perspective with Dynamic Optimality. In the process, I

will argue that, while a few of the mentioned objections can be dismissed with relative

ease, others will require strong medicine that readers may be differentially inclined to

swallow. However one comes down on the matter of reconciling causal decision theory

30These arguments are made, for example, by [2], [4], [85] and [63].
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and Dynamic Optimality, at the very least, I hope to make clear that the interplay of

causal concerns and dynamic choice theory opens up a range of rich and fascinating

philosophical problems that are well worth the further attention of decision theorists.
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Chapter 3

Newcombian Tragedy

While Jeffrey’s Logic of Decision has much to recommend it as a theory of

rational choice, Newcomb problems seem to present convincing counterexam-

ples. In light of this, many philosophers have turned to causal decision theory

(CDT) as a more adequate alternative. Unfortunately, a number of recent au-

thors have constructed sequential choice problems that seem to reveal that

CDT contradicts plausible dynamic choice principles including Dynamic Op-

timality. These problems are generally taken as casting doubt on the normative

status of either CDT or the relevant dynamic choice principles. This chapter

proposes a way out of this dilemma. We can affirm the normative necessity

of both CDT and Dynamic Optimality if only we also embrace an epistemic

principle requiring an agent’s assessment of the causal and evidential import

of her acts to coincide. This principle, which I dub Autonomy, turns out to

be sufficient for a causalist agent’s satisfaction of Dynamic Optimality. While

radical, I argue the principle bears an affinity to a number of related theses

defended in the literature on independent grounds and presents the only real

prospect for a reconciliation between CDT and Dynamic Optimality.
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3.1 Introduction

The choices we make often provide us with information about the world. My decision to

turn the spigot valve is evidence of imminent water flow. Opting to press my neighbor’s

doorbell suggests that she may come and open the door. A flip of the light switch on

my wall portends a change in ambient lighting conditions. Etc. In cases like these, the

evidential bearing of my decision upon the relevant state of the world is underwritten by

a causal connection. Turning the spigot valve is evidence that water will flow because

turning the valve tends to cause water to flow. And so on. This is the typical case and

generates no paradox.

More puzzling are those cases in which our choices seem to provide evidence for states

of affairs that they have no tendency to cause. Game theory supplies a familiar example.

My friend and I are to play a Prisoner’s Dilemma. I take my practical reasoning to be

similar to her’s and hence my behavior to be indicative of her’s. My choice to cooperate

(defect) is then evidence of my friend’s choice to cooperate (defect), even though our

respective choices are causally isolated from one another. Here, analogical, rather than

causal, reasoning seems to motivate an evidential connection between my choice and my

friend’s.1

Cases of this sort have lead to well-known difficulties for Jeffrey’s Logic of Decision as

an account of instrumentally rational choice. When the evidential and causal import of

an agent’s choices come apart, is an option’s choiceworthiness to be fixed by its eviden-

tial news value or by its causal efficacy? Evidentialists say the former, while causalists

maintain the latter. Jeffrey’s unadorned theory of desirability maximization is archetypi-

1This classic example is originally due to [53].
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cally evidentialist: the desirability of an act is a measure of its news value and bears no

immediate relation to its causal efficacy. For those of us inclined to think of instrumental

rationality in causal terms, this casts serious doubt upon the general adequacy of Jeffrey’s

theory.

Fortunately, decision theorists have managed to modify the Logic of Decision to address

these worries, resulting in an account that retains the basic virtues of the Jeffrey model

while simultaneously incorporating more direct sensitivity to causal concerns. This Causal

Decision Theory (CDT) has much to recommend it and is regarded by many philosophers

as the most convincing analysis of rational choice presently on offer. However, a flurry of

recent objections to the theory has begun to sow increasing doubt in the field regarding

the ultimate tenability of CDT as a characterization of rational agency. Most troubling

among these objections, to my mind, are those contending that agents describable by CDT

are prone to a variety of sequential choice woes including dynamic inconsistency and

susceptibility to dynamic dutch books. In effect, these arguments suggest that CDT is

incompatible with Dynamic Optimality.

My goal in this chapter is to explore how one might patch up CDT to avoid any con-

flict with Dynamic Optimality. Ultimately, I will suggest that, while some of the recent

sequential-choice-inspired objections to CDT rest upon relatively easily corrected mistakes

about the nature of sequential choice, a full reconciliation of CDT with Dynamic Optimal-

ity requires endorsement of a strong rationality postulate I dub Autonomy, according to

which the (perceived) causal and evidential import of an agent’s acts always coincide from

the perspective of the acting agent. Agents who respect this norm never view their acts

as evidence of causally unrelated states of the world. This is a radical thesis in the context

of the CDT and EDT debate. If Autonomy really characterizes the attitudes of rational
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deliberating agents, then I may not, for example, take my choice to cooperate (defect)

in the Prisoner’s Dilemma as evidence of my causally separated friend’s choice. Since

only a suspected causal connection can purchase such an evidential link, the analogical

reasoning sketched above turns out to be illicit.

After introducing some background on CDT (§2) and presenting two recent dynamic

choice arguments against CDT (§3), I argue that the latter of these two arguments, while

prima facie troubling for the causalist, assumes an analysis of sequential choice that is at

odds with the account hereto defended in this dissertation and hence need not worry the

causalist provided she adopts the account defended here (§4). However, the causalist

is still left with the first first dynamic choice problem as it cannot be deflected in this

manner. This leads me to propose Autonomy as the only available remedy. In particular, I

demonstrate that causalists who respect Autonomy invariably satisfy Dynamic Optimal-

ity, guaranteeing their immunity from dynamic dutch books and other diachronic woes

(§5). Given the radical nature of Autonomy, my conclusion in §6 attempts to render it

more palatable as a rationality postulate by connecting it to related ideas in the literature.

3.2 Causality and Rational Choice

As we saw in the previous chapter, Jeffrey envisions agents that express preferences over

an algebra of propositions construed as possible news items. These preferences are as-

sumed to be structured so as to be representable via a pair of desirability and probability

functions, (V,P), such that V satisfies the desirability axiom with respect to P and one

proposition is preferred to another just in case it has greater desirability according to V.

Recall also that, according to evidentialists, translating all of this into a theory of rational

decision is simple. We just view the set of options an agent faces in a decision problem as
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a partition of propositions by associating each act open to the agent with the proposition

that she performs it, and then stipulate that rational choice consists in maximization of

desirability.EDT is simply the theory of rational choice that gives this prescription. More

precisely, if a decision problem is given by a set of acts A1, . . . ,An that form a logical

partition, then EDT prescribes that agents select an act that is V-maximal, i.e. an act Ai

such that V(Ai) ≥ V(A j) for 1 ≤ j ≤ n.2

While this approach continues to enjoy its defenders,3 it has faced considerable criticism as

an account of rational choice. In particular, it seems to go awry in Newcomb problems. Such

cases have been taken as showing that EDT is inadequate as a theory of rational choice

because it ignores the relevance of specifically causal information to decision making.

Hence, while Jeffrey had originally considered the absence of causal notions in his theory

to be one of its key advantages over the arguably more causally-loaded theories of Ramsey

and Savage, this apparent advantage seems to devolve into a liability.

3.2.1 Newcomb’s Problem

In the classic Newcomb problem,4 an eccentric millionaire sets before you two boxes, one

opaque and the other transparent. The transparent box can be seen to hold $1,000. The

millionaire tells you that the opaque box contains either one million dollars or nothing.

She then offers you a choice between taking both boxes (and all their contents) or just the

opaque box. Here’s the catch. This millionaire is an incredibly reliable predictor of human

behavior and she has placed the $1,000,000 in the opaque if and only if she predicted that

you would take only the opaque box. The predictor has already made her prediction and

2In the event that there is more than one such act, EDT deems all V-maximal acts rational.
3Most notably, [2].
4The Newcomb problem was first introduced to the philosophical literature by [62].
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fixed the contents of the opaque box by the time you have to deliberate about what to do.

Suppose also that you only care about your wealth level and that your utility for money

is linear.

Denote the decision to take only one box by A. Since you must take either one box or

two, ¬A is then the decision to take both boxes, and {A,¬A} forms a partition. Let K be

the proposition that the predictor has placed $1,000,000 in the opaque box and ¬K the

proposition that she has left it empty. {K,¬K} is then a partition of propositions that is

causally independent of your choice to one-box or two-box, i.e. your decision has no causal

bearing on whether K is true. The partition is also set up so that each of its elements, when

conjoined with a particular act, can be associated with a determinate monetary outcome.

We can then express the Newcomb problem in the following decision table:

K ¬K
A 1,000,000 0
¬A 1,001,000 1,000

Table 3.1: The Newomb Problem

Here, as in all decision problems, EDT would have us maximize desirability. That policy

favors A, assuming the predictor is taken to be sufficiently reliable. For example, suppose

P(K|A) = .9 and P(¬K|¬A) = .9. Then, letting ‘X = x’ be the proposition that the agent

earns $x and recognizing that the problem countenances only four possible monetary

outcomes, we have:

V(A) =
∑

x

P(X = x|A)x

= (.9)(1, 000, 000) + (.1)(0)

= 900, 000
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and also

V(A) =
∑

x

P(X = x|A)x

= (.9)(1, 000) + (.1)(1, 000, 100)

= 100, 910

So we have that V(A) > V(A). Hence, EDT endorses taking only one box and so forfeiting

the $1,000 dollars in the transparent box.

This is the wrong answer. Or so it has seemed to many.5 The predictor has either placed

the money in the opaque box or she hasn’t. If she did place the money in the opaque box,

then taking both boxes will produce a better pay off than sticking with one. Similarly,

if she left the opaque box empty, you will likewise be better off taking both boxes. So,

regardless of what the predictor did, two-boxing produces better results than one-boxing,

and that seems like a compelling reason to take both boxes.

3.2.2 Causal Decision Theory

In response to the challenge posed by Newcomb problems, philosophers have sought to

reintroduce causal notions into the Logic of Decision without forfeiting the various ad-

vantages afforded by Jeffrey’s framework. Such attempts typically fly under the banner of

causal decision theory. While there are several versions of causal decision theory employed

in the literature, they tend to share a common spirit and their differences will be of little

consequence to our discussion of causalism’s fate vis-a-vis Dynamic Optimality.6 For

5Even many defenders of EDT have felt this way and have sought to argue that evidentialists need not
be committed to one-boxing in the Newcomb problem. See, for example, [44] and [25].

6The first public defense of causal decision theory appears in [32], though their idea of formulating
decision theory in terms of subjunctive conditionals stems from an earlier letter of Stalnaker’s. Soon
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definiteness and to emphasize continuity with Jeffrey’s theory, let’s fix our attention upon

the popular rendition of causal decision theory defended by Jim Joyce.7

Joyce proposes that rather than computing the instrumental value of an act-proposition us-

ing standard conditional probabilities as Jeffrey’s theory suggests, we ought rather to use

causal probabilities, which intuitively measure how much causal, as opposed to evidential,

support one proposition provides another. Where X and Y are propositions, I will write

‘PX(Y)’ to denote the causal probability of Y given X. There are various ways to under-

stand this quantity, corresponding to different versions of causal decision theory. On one

approach, PX(Y) might be identified with the probability of a non-backtracking subjunc-

tive conditional featuring X as antecedent and Y as consequent, i.e. P(X� Y). We might

also (and compatibility with the first proposal, I think) computing PX(Y) relative to a given

background partition of causal factors or dependency hypotheses that are causally indepen-

dent of X and individually suffice to fix the causal bearing of X upon Y and its negation.

Writing such a (finite) partition as ‘{Ki}i’, we might define PX(Y) =
∑

i P(Y|XKi)P(Ki). Noth-

ing much going forward will hinge upon the exact manner in which we opt to construe

causal probability.

What is important to emphasize is simply that causal probability is, in general, distinct

from conditional probability. As a simple toy example, consider a group of six people,

three wearing red shirts and three wearing blue shirts. Suppose I know that exactly two

of those wearing red shirts are also wearing glasses, while only one of those wearing a

blue shirt is. If I learn that a given individual is among the three wearing red shirts,

after, [76] and [54] proposed alternative versions of causal decision theory with less explicit reliance upon
conditionals, while [84] offered an account in terms of primitive imaging. Somewhat later, a number of
authors, including [65], [41], and [65], also attempted to translate the insights of causal decision theory into
the framework of graphical causal models. Related here also is the interventional decision theory of [89].

7See [45].
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absent further information, this will support the claim that she is also wearing glasses,

i.e. P(glasses|red) = .6. However, the probability that the individual in question is wear-

ing glasses on the causal supposition that she is made to wear a red shirt is presumably

equivalent to the prior probability of her wearing glasses, i.e. Pred(glasses) = .5, for inter-

vening to fix the color of the agent’s shirt will not affect my credences regarding her choice

of eyeware, even though learning the color of her shirt (non-interventionally) would.

Cases of spurious correlation (such as that between shirt color and wearing glasses in

the considered example) forbid a straightforward identification of causal and conditional

probabilities.

Granting an understanding of causal probability, Joyce suggests that the utility or efficacy

value of an act may be identified with its desirability on the causal or interventional suppo-

sition that it is performed. That is, to compute the instrumental value of an act, an agent

computes the desirability or news value of the act from the standpoint of interventionally

supposing the act to be performed, that is, using her causal probabilities given the per-

formance of the act in place of her standard conditional probabilities. Put formally, and

letting U denote utility/efficacy value, we can understand CDT as requiring maximization

of:

For any a ∈ A, U(a) = Va(a) =
∑

i Pa(Si|a)Va(Sia) =
∑

i Pa(Si)U(Sia), where

{Si}i ⊆ A is any finite partition.8

Applied to Newcomb’s Problem, CDT delivers a verdict in favor of taking both boxes,

provided that the agent really does take her choice to be causally irrelevant to the presence

or absence of the million in the opaque box, i.e. PA(K) = P(K). Computing efficacy values

relative to the partition {K,K} and recognizing that desirability and utility coincide on

8Here Va is desirability on the causal supposition that a. That is, the suggestion here is to define U in
terms of V computed relative to a ‘causalized’ probability measure, e.g. Pa.
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propositions that suffice to fix the agent’s wealth-level, we have:

U(A) = PA(K)U(AK) + PA(K)U(AK)

= PA(K)(1, 000, 000) + PA(K)(0)

= PA(K)(1, 000, 000)

= P(K)(1, 000, 000)

and also

U(A) = PA(K)U(AK) + PA(K)U(AK)

= PA(K)(1, 001, 000) + PA(K)(1, 000)

= P(K)(1, 001, 000) + P(K)(1, 000)

So, regardless of how an agent facing the Newcomb problem spreads her credences over

the relevant partition, U(A) > U(A). By taking account of an agent’s causal judgments,

CDT thus gets the right answer in Newcomb problems, improving upon Jeffrey’s theory

of desirability maximization.

3.3 Diachronically Exploiting the Causalist

This apparent improvement notwithstanding, CDT’s prospects for serving as a generally

satisfying account of instrumental rationality are called into question by a number of

troubling dynamic choice problems in which the prescriptions of CDT appear to lead

agents down the wrong path. While not framed explicitly in terms of Dynamic Optimality,

each of these arguments could be viewed as a challenge to the compatibility of CDT and

this compelling principle. Given the picture of rationality painted in this dissertation,

this is certainly troubling news for causalists. Indeed, among the plethora of alleged
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counterexamples to CDT recently proposed in the philosophical literature, the dynamic

choice objections constitute, it seems to me, the greatest threat to the tenability of the

theory.9 I think this threat can be averted but only at the cost of embracing a strong

rationality postulate that has the effect of largely (though perhaps not entirely) deflating

the conflict between causalists and evidentialists. Before presenting this argument, I

will first rehearse two recent dynamic choice arguments against CDT, a first due to Arif

Ahmed and a second due to Jack Spencer. While each of these arguments alleges a

conflict between CDT and Dynamic Optimality, the latter argument is the more evidently

troubling for CDT. However, happily for the causalist, Spencer’s argument rests upon

a questionable understanding of sequential choice, one at odds with the Sophistication

principle defended in Chapter 1, and hence can actually be set aside with relative ease. It

is only Ahmed’s argument that demands stronger medicine.

3.3.1 Ahmed’s Psycho-Insurance

The first dynamic choice argument against CDT rests upon a sequential choice problem

constructed by Arif Ahmed, the theory’s most formidable critic in recent years. Ahmed

dubs the problem Psycho-Insurance and contends that it witnesses to the dynamic incon-

sistency of CDT while simultaneously subjecting causalists to a Dutch Book. As noted,

however, we may take the argument as revealing a violation of Dynamic Optimality on

the part of agents described by CDT.10

The Psycho-Insurance problem is based on Andy Egan’s now famous Psycho Button

case.11 In the first stage of the problem, a Newcombian predictor offers you a choice be-

9Some of the more prominent static choice objections to CDT include [27], [? ], [2], [? ], and [86]. I set
these aside to focus on what are, to my mind at least, more threatening dynamic choice objections.

10Ahmed offers this argument in [2] and [4]. Very similar arguments to Ahmed’s are also offered in [63].
11[27]. Ahmed notes that cases of similar structure have appeared in the literature before, for example, in
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tween pressing a button and refraining from pressing it. If she predicted that you would

press the button, then she has set things up so that pressing the button will cause $1 to be

debited from your bank account. If she predicted that you would not press the button,

then she has set things up so that pressing the button will cause $1 to be credited to your

account. (This is Ahmed’s sanitized version of Egan’s case.) Let P be the proposition

that you press the button. The options you face here are then P and P. Let K be the

proposition that the predictor had predicted you would press while K is the proposi-

tion that the predictor predicted you wouldn’t press. Assume again that your utilities

coincide with your dollar payoffs, i.e. all you care about is money and you value it linearly.

You take the predictor to be fairly reliable so let’s fix that P(K|P) = P(¬K|¬P) = n, where n

is greater than .75. After you have made your decision with regard to pressing the button,

you will be offered an opportunity to bet on whether the predictor correctly predicted your

choice. The bet will pay $0.50 if the predictor was correct and cost you $1.50 otherwise.

Let B be the proposition that you bet. This decision problem is captured in decision tree

T1 depicted in Figure 1.

n0

n2

z4B

z3B
P

n1

z2B

z1B

P

Figure 3.1: The Psycho-Insurance Problem.
S(n0) = T, S(n1) = P, S(n2) = P, S(z1) = PB, S(z2) = PB, S(z3) = PB, S(z4) = P.B.

The argument that the causalist will violate Dynamic Optimality in this problem is straight-

[30].
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forward. To show that the causalist violates this principle, it suffices to show that she

considers some plan acceptable at the start of the decision problem, i.e. at n0, whose con-

tinuation at n1 or n2 she does not consider acceptable. Then there will be a plan that she

views as ex ante favorable but will foreseeably deviate from and hence is infeasible for her.

Note first that there are four plans available to you at the start of this decision problem:

Ω(T1,n0) = {PB, PB, PB, P.B}. We can follow Ahmed in depicting this decision problem in

normal form using Table 2.

K K
PB -0.5 -0.5
PB -1 1
PB -1.5 .5
P.B 0 0

Table 3.2: The Psycho-Insurance Problem in Normal Form

Observe that relative to the partition {K,K} two of these plans are strictly dominated: PB

and PB. The first is dominated by P.B, while the latter is dominated by PB. Given that the

members of {K,K} are causally independent of any of your plans, i.e. PPB(K) = P(K), etc.,

if you are a causalist, you will deem each of these dominated plans unacceptable. Hence,

either PB or P.B will be most preferred at the start of the problem, or perhaps both. Which

of these is the case will depend upon how likely you view each of the hypotheses, K and K.

Hence, D(Ω(T1,n0)) cannot include the plans associated with PB or PB. So since we know

that D(·) always returns a non-empty set, it must contain at least one of the plans associated

with either PB or P.B. Suppose it includes PB. Then PB is deemed an acceptable plan at

n0. But suppose you carry out the first stage of this plan and press the button, i.e. make P

true, and that, upon finding yourself at n1, you update your beliefs by conditionalization.
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It will then be the case that B �n1 ¬B, since you take the predictor to be highly reliable and

so consider the bet better than fair at that point. So, (PB)(n1) < D(Ω(T2,n1)), since it is not

maximal with respect to �n1 . But we then have a violation of Dynamic Optimality, for PB

is judged to be ex ante optimal by the agent and yet its continuation at n1 is not preferred

by the agent at n1, and hence the plan is not feasible. But then the set of optimal plans in

T1 is not a subset of the set of feasible plans, i.e. D(Ω(T2,n0)) * DFD(T1,n0). If we assume

instead that P.B rather than PB is an ex ante acceptable plan, the causalist fares no better,

as the same argument shows, mutatis mutandis, that Dynamic Optimality is again violated.

Note that, treating K and its negation as states and given the posited ultimate outcomes

featuring in this problem, Psycho-Insurance also constitutes a case of diachronic tragedy

on the part of the causalist. Given the Sophistication principle, we know that the causalist

will end up betting at the second stage of this problem, but each of the plans that involve

betting are strictly dominated by alternative plans that involve not betting. By altering

the sophisticated causalist’s behavior in T1, one could guarantee her an outcome more to

her own liking.

3.3.2 Spencer’s Two Rooms

For those of us inclined to affirm Dynamic Optimality as a criterion of instrumental ra-

tionality, Psycho-Insurance presents a real challenge to CDT. However, as surveyed in

the first chapter, a number of decision theorists are willing to give up on Dynamic Opti-

mality and a number of causalists appear inclined to take this route when faced with the

Psycho-Insurance problem.12 Another recent sequential problem posed by Jack Spencer

and known as Two Rooms appears less easy to write off.13 If Spencer is right about the

12This is the route taken by [48], for example.
13This problem appears in [85].
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recommendations of CDT in Two Rooms, CDT is in trouble indeed.

Two Rooms is a sequentialized version of Spencer and Ian Wells’ Frustrator problem.14 To

see how this problem goes, consider this static problem first. Suppose you must decide

between taking one of three items: Box A, Box B, or an envelope. The envelope is known

to contain $40, while the boxes are known to contain a collective total of $100. However,

the distribution of the $100 across the boxes is uncertain. In fact, it was determined by

a Newcombian predictor who placed the $100 in Box A just in case he predicted you

would take Box B and placed it in Box B just in case he predicted you would take Box

A. If the predictor predicted that you would opt for the envelope, he split the money

evenly between the boxes, placing $50 in each. Assume, as usual, that you are aware of

this, that your basic values align with your potential wealth-levels, and that you have no

causal power over the past. In this case, CDT recommends taking either Box A or Box B,

depending upon how likely you judge the predictor to have predicted you to choose each

of these boxes.

To see this, denote taking Box A as ‘A’, taking Box B as ‘B’, and taking the envelope

as ‘E’. Let the predictor’s prediction of each of these events be labeled ‘A∗’, ‘B∗’, and

‘E∗’, respectively. We can then compute the utility of each of your options relative to the

partition, {A∗,B∗,E∗}, each of whose members is causally independent of your choice of

14[86].
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act. In particular, we have:

U(A) = PA(A∗)U(AA∗) + PA(B∗)U(AB∗) + PA(E∗)U(AE∗)

= P(A∗)U(AA∗) + P(B∗)U(AB∗) + P(E∗)U(AE∗)

= P(A∗)0 + P(B∗)100 + P(E∗)50

= P(B∗)100 + P(E∗)50

U(B) = PB(A∗)U(BA∗) + PB(B∗)U(BB∗) + PB(E∗)U(BE∗)

= P(A∗)U(BA∗) + P(B∗)U(BB∗) + P(E∗)U(BE∗)

= P(A∗)100 + P(B∗)0 + P(E∗)50

= P(A∗)100 + P(E∗)50

U(E) = PE(A∗)U(EA∗) + PE(B∗)U(EB∗) + PE(E∗)U(EE∗)

= 40

Regardless of how you spread your credences over the actions of the predictor, either

U(A) or U(B) must come out greater than U(E) = 40, hence CDT will recommend forgoing

the envelope.15 This strikes many as counterintuitive, but in itself it may not be decisive

as an objection to CDT, as Spencer grants.16 The Two Rooms problem, however, turns the

screw on the causalist a bit further.

Spencer asks us to imagine that you are offered the choice to go into one of two rooms. In

the first you will receive $35 for sure. In the second, you will face the Frustrator problem.

This problem is depicted in decision tree T2 in Figure 2. Which room should you enter?

According to Spencer, CDT recommends entering room one to take the $35. Why? Well,

15This follows from the fact that at least one of U(A) and U(B) must be greater than or equal to 50. If this
were not the case, then the sum [P(B∗)100 + P(E∗)50 + P(A∗)100 + P(E∗)50] would have to be less than 100,
but it is necessarily equal to 100.

16See, for example, the response to the Frustrator problem offered by [49].
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let’s use R to represent the proposition that you go to room one and, thus, R represents

the proposition that you go to room 2. We know that U(R) = 35, so the only question

is what is U(R)? Spencer sensibly assumes that you, as a sophisticated causalist agent,

will employ some backward induction and realize that, were you to enter room two, you

would opt to take either Box A or Box B. Let’s say for concreteness that you would opt for

Box A. Given this prediction, what is the utility of R?

n0

n2

z4
E

z3
B

z2
A

R

z1R

Figure 3.2: The Two Rooms Problem.
S(n0) = T, S(z1) = R, S(n2) = R, S(z2) = RA, S(z3) = RB, S(z4) = RE.

Employing the formula for computing causal expected utilities across the partition given

by the possible combinations of your choices and the predictor’s predictions in the Frus-

trator problem (and dropping the possibilities that yield zero utiltiy in the sum), we

have:

U(R) = PR(BA∗)100 + PR(EA∗)40 + PR(AB∗)100 + PR(EB∗)40 + PR(AE∗)50 + PR(BE∗)50 + PR(EE∗)40

= PR(AB∗)100 + PR(AE∗)50

≈ 0

This last line is justified by the fact that, given the assumed reliability of the predictor, you

take it to be very unlikely that the predictor would have predicted that you would take
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either Box B or the envelope when you in fact take Box A. Since the utility of R is then

judged to be near 0, U(R) > U(R) and thus a causalist will clearly head to room one. But

this is troubling. Not only does this behavior violate Dynamic Optimality (clearly the plan

involving going to room 2 and taking the envelope is judged ex ante better than going

to room 1), it also violates what Spencer calls the Guaranteed Principle. According to this

principle, if one decision guarantees an outcome of a certain value in the sense of making

that value certainly available to the agent contingent upon making the decision in question

and another possible decision ensures a lesser value in the sense of certainly leading to

an outcome of lesser value, then a rational agent ought to prefer the first decision to the

second. In the case of Two Rooms, R ensures $35, while R guarantees $40 (by making

available the envelope option). Hence, by preferring R to R, the causalist violates the

Guaranteed Principle.

3.4 CDT and Sophisticated Planning

By threatening its compatibility with Dynamic Optimality, Psycho-Button and Two Rooms

each present a formidable challenge to CDT. However, as noted, the challenge posed by

Two Rooms appears more urgent. If Spencer is right, CDT violates Dynamic Optimality

in a particularly egregious way in this example by contravening the Guarantee Principle.

Moreover, CDT’s central competitors (e.g. EDT) manage to avoid this contravention of

the Guaranteed Principle in Two Rooms, despite agreeing with CDT in the behavior they

license (albeit in a dynamically optimal fashion) in Psycho-Insurance. Perhaps for this

reason, the intuition that something has gone wrong for the causalist in Two Rooms is

remarkably difficult to suppress. Fortunately, I don’t think causalists have to suppress it,

as Spencer’s argument that CDT recommends choosing R and hence violating the Guar-

anteed Principle rests upon a contentious method of analyzing sequential choice problems
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that a causalist need not accept. In fact, the approach to sequential choice assumed by

Spencer runs counter to the Sophistication principle defended in chapter 1.

Recall that, according to Sophistication, a rational agent’s behavior norm in a sequential

choice problem modelled by a decision tree T is given by the plans she judges as optimal in

the tree TD that is formed from T by pruning it back in line with backward induction using

the agent’s judgments of admissibility encoded in D. Applying this to a causalist facing

Two Rooms, such an agent will indeed realize that, conditional upon reaching Room 2,

she will opt for, say, Box A. However, it is this feasible plan (namely, choosing Room 2

and then taking Box A) that she will evaluate and compare against the competing option

of going to Room 1. If she does this, she will find that, just as taking Box A has greater

utility than taking the sure $40 in the envelope, so too does the extended plan of taking Box

A after going to Room 2 have greater utility than the plan of taking the sure $35 in Room 1.

Putting this more formally, we can compute the causal efficacy of the plan RA relative to

the partition {A∗,B∗,E∗}, whose members are causally independent of the agent’s choice of

plan:

U(RA) = PRA(A∗)0 + PRA(B∗)100 + PR(E∗)50

= P(B∗)100 + P(E∗)50

> 35 = U(R)

Hence, the ex ante optimal plan available in T2 is RA rather than R, and thus a causalist

agent who abides by Sophistication will implement RA rather than R, avoiding any vio-

lation of the Guaranteed Principle.
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Spencer assumes that CDT is committed to evaluating presently available options by their

utility considered as isolated decisions rather than by the utility of the plans they initiate

taken as extended wholes. In fairness to Spencer, this is indeed the approach favored by

some of CDT’s most prominent defenders and it does lead to the wretched consequences

he describes in Two Rooms.17 But there is no reason that a causalist, qua causalist, should

be committed to this approach to sequential choice. There are two orthogonal issues at

play here. First, how should an agent evaluate the instrumental value of the objects of

her practical deliberation, and, second, what is the nature of those objects of deliberation?

CDT is a theory that answers the first question: an item of practical deliberation should be

judged according to its utility or efficacy value. But this leaves open whether the objects

that ought to be so assessed include, in deliberational contexts involving dynamic choice,

extended plans or only isolated decisions at a time.

One objection to countenancing temporally extended plans as items of practical delibera-

tion might reason that since the implementation of an extended plan depends not simply

upon an agent’s current choice but also her future choices implementing such a plan is not

under her immediate control and, hence, may fail to be feasible for her to carry out. This is

quite right as an objection to a full blown theory of resolute choice. A rationally infeasible

plan is not a fit object of practical deliberation for a rational agent. But this offers no reason

to think that a feasible plan cannot serve as such an object, and Sophistication includes

this restriction. In fact, it seems a notable feature of human agency that we deliberate and

form intentions regarding not only immediately available acts but also regarding larger

contingency plans. Moreover, as argued in chapter one, the intentions we arrive at in the

course of these deliberations often play an important role in terms of fixing future choices

17Jim Joyce, for example, does seem committed to this view in [49].
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involving either indifference or parity, thus serving to unify an agent’s decision making

across time. To insist, as Spencer does, that plans cannot serve as the objects of practical

deliberation for rational agents is to deny any real role for planning in sequential choice

problems. On such a view, every non-trivial sequential choice problem is indistinguish-

able from an extensive form game in which every information set is occupied by a different

player. This is a possible view of human agency, but it is not one that a causalist need

accept, especially not one sympathetic to dynamic choice norms like Dynamic Optimality.

Note also the awkward double-think that Spencer’s approach to sequential choice re-

quires a causalist to adopt. Considered as an option I can carry out now, choosing Box

A is judged by its utility and is worth more to me than $40, but considered as a future

possibility, choosing Box A is treated as a state of the world and judged by its desirability

and hence worth less than $35 to me. Causalists like Joyce have attempted to defend

this pattern of valuation and there are certainly things one can say in defense of such

a discrepancy between the evaluation of present and future actions, but causalists can

escape the need for such stretching and straining altogether by embracing a more unified

approach to dynamic choice. This certainly strikes me as the more appealing route to take.

If the view of sequential choice encoded in Sophistication is defensible, then a causalist

need not fear the Two Rooms problem. It witnesses to a violation of neither Dynamic

Optimality nor the Guaranteed Principle on the part of a causalist who satisfies Sophis-

tication. Psycho-Insurance cannot be so easily dismissed, however. While Ahmed’s case

is prima facie less alarming than Spencer’s, it does reveal a real conflict between CDT and

Dynamic Optimality that an alternative gloss on sequential choice will not obviate. The

agent facing Psycho-Insurance is welcome to assess the merits of her immediately avail-

able options (i.e. pressing the button or not) by evaluating the utility of the possible plans
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they initiate, but doing so will not alter the fact that not betting at the problem’s second

stage is both ex ante optimal and yet infeasible. A further remedy is thus required if CDT

is to be reconciled with Dynamic Optimality.

3.5 Autonomy

I have argued that rational agents satisfy Dynamic Optimality. If this is right, then Ahmed

has shown that agents he describes as opting to either press and bet or not press and

bet in the Psycho-Insurance problem are irrational. Ahmed locates the source of this

irrationality in these agents’ allegiance to CDT. However, an agent’s decision rule is only

one possible source of irrationality. The attitudes that serve as inputs to her decision

rule might also be to blame for instrumentally ineffective behavior on the agent’s part.

Alternatively, the update rule(s) that the agent employs to revise her attitudes over the

course of implementing a sequential plan might be the real culprit. If only causalists who

violate a further rationality condition are susceptible to violations of Dynamic Optimality,

then there is no essential conflict between CDT and Dynamic Optimality. Those of us

committed to the rational admissibility of CDT as a decision rule would then be advised

to turn a critical eye toward the attitudes and update rules of causalist agents that violate

Dynamic Optimality in problems like Psycho-Insurance.

What feature of the agents Ahmed considers might be open to criticism aside from their

adherence to CDT? There are only a few choices here. For starters, one might question

these agents’ unrestricted adherence to conditionalization as an update rule for revising

their credences and desirabilities in response to new information. Conditionalization is

unobjectionable when applied to cases in which an agent passively learns the truth of a

proposition identified in the algebra of events she has beliefs over. That is, in the context of
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dynamic choice, pursuant to natural nodes a rational agent ought to update her credences

and desirabilities by conditionalization. However, conditionalization might be a more

questionable assumption when applied to cases in which the new information an agent

learns is brought about by her own willful decision to bring it about. That is, it might be

questionable whether conditionalization properly characterizes the sort of learning that

takes place pursuant to choice nodes in dynamic choice problems.

A number of philosophers have independently challenged this assumption for grounds

different than those that concern us in this essay. John Cantwell, for example, has sug-

gested that the problem of decision instability exemplified in one-shot decision problems

like Gibbard and Harper’s Death in Damascus or Egan’s Psycho-Button provides prag-

matic motivation to adopt a bifurcated update rule requiring one to update by condi-

tionalization when learning states and by imaging (i.e. employing causal probabilities)

when learning acts.18 Melissa Fusco arrives at similar conclusions from considerations of

epistemic time bias.19 This idea also seems to share something in common with the way

some causal decision theorist working in the tradition of graphical causal models often

talk. On one way of reading such authors, a rational decision qualifies as an intervention

that severs any grounds for correlation between the act decided upon and temporally

antecedent states of affairs. Hence, according to this approach, while learning a state

goes by conditionalization, learning an act goes by an alternative mode of belief revision

appropriate to causal intervention.20

This is not the route I will pursue here. In what follows, I leave conditionalization in

18[20].
19[28].
20Some causal decision theorists view treating decisions as interventions as merely a useful fiction in

the context of static decision making and hence do not view this as providing any rival updating rule to
conditionalization. Others, however, do seem to intend to be writing more than fiction. See [41], [42] and
the discussion in [90].
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place as the uniquely rational update rule. Part of the reason for this is simply to explore

the alternative proposal I wish to make. Another is to avoid challenging as orthodox a

principle as updating on propositional evidence in accord with Bayes’ Rule. Given the

well-known diachronic tragedy arguments favoring conditionalization,21 this latter rea-

son is especially motivating in the current context in which our concern is precisely to

avoid dynamic suboptimality. That said, I do think this path merits closer attention. It is

not at all clear, for example, that the standard arguments for conditionalization (e.g. the

dynamic dutch book argument) apply equally well when the event considered as a condi-

tion is one of the betting agent’s own (future) act-propositions. Moreover, the alternative

solution I will propose does share something in common, at least in spirit, with the ideas

of authors like Cantwell and Fusco, so don’t mean to distance myself too far from this

proposal. It’s just not the one I’ll explore here.

Setting aside CDT and conditionalization as sacrosanct, the only option left is to challenge

the rationality of the prior attitudes of the agents Ahmed considers. In particular, their

prior credences. (Their basic wealth-obsessed desirabilities, while perhaps morally objec-

tionable, are, of course, not a plausible point of attack for our purposes.) What feature

of these agents’ credences might one identify as objectionable? I want to propose that it

is simply their Newcombian character. In other words, these agents’ irrationality lies in

the fact that they treat their own decisions as evidence for states of the world that they

have no tendency to cause. It is precisely when an agent’s assessment of the causal and

evidential import of her plans come apart that she is liable to violate Dynamic Optimality

and perhaps even fall prey to diachronic tragedy. When, on the contrary, an agent always

views her possible plans as evidence only for what they have a tendency to cause, her sat-

isfaction of Dynamic Optimality is guaranteed. I will say that such agents are autonomous

21See [55] and [82], the latter of which frames the dutch book argument for conditionalization explicitly
in terms of dynamic choice.
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since they satisfy:

Autonomy: For any proposition X ∈ A, any decision tree T, and any plan

π ∈ Ω(T,n), Pn(X|π) = Pπn (X).

This principle requires the effects of evidential and causal supposition to coincide in the

case of rational agents contemplating their own currently accessible plans of action. To

be clear, evidential and causal supposition are clearly distinct forms of reasoning and do

often come apart (as the toy example of §2.2 made clear), but Autonomy forbids this to

happen in the case of the reflective decisions of fully rational agents. Note that adherence

to such a rule in the case of the Psycho-Insurance problem would avert any violation

of Dynamic Optimality on the part of the causalist by disavowing the prior credences

assumed at the start of the problem. Assuming that the agent takes her decision to press

or not press the button to be causally independent of the predictor’s prediction, she must

also, by Autonomy, take it to be evidentially independent of the predictor’s prediction and

hence updating by conditionalization following her decision will leave her confidence in

the predictor’s prediction unaltered and so there is never any need to purchase Ahmed’s

insurance at the problem’s second stage. Alternatively, the agent might hold firm to the

predictor’s reliability, in which case she must, by Autonomy, forsake the assumption of

causal independence and hence the dominated plans need not be judged antecedently

inadmissible. Either way, Dynamic Optimality is satisfied.

Autonomy is more than a fortuitous remedy to the bad behavior described by Ahmed in

Psycho-Insurance. We can prove that autonomous agents are guaranteed to never violate

Dynamic Optimality. In what follows, I assume for simplicity that we may compute

utility relative to a base set of possible worlds and that an agent’s evaluation of the

desirability of these base worlds is stable. As a further simplification, I also treat the
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planning conditional truth-functionally as a material conditional. However, I suspect that

alternative interpretations of the planning conditional could yield the same result under

modest assumptions. Finally, I shall also assume that decision trees have an implicit

causal structure to them that precludes posterior acts from causally influencing prior

learning events. That is, if n is a natural node in a tree T and p ∈ Ω(T,n),n′ ∈ N+(n), then

Pp(S(n′)|S(n)) = P(S(n′)|S(n)).

Proposition 6. Autonomous CDT agents satisfy Dynamic Optimality.

Proof. Let T be an arbitrary decision tree faced by an autonomous causalist. We want

to show that every ex ante optimal plan in T is feasible for a CDT agent who satisfies

Autonomy, i.e. D(Ω(T,n0)) ⊆ DFD(T,n0). Suppose p ∈ D(Ω(T,n0)). By CDT then, p is

Un0-maximal. It now suffices to show that an option judged Una-maximal at a particular

node na will continue to be judged Unb-maximal at any node n′ ∈ N+(n). That will suffice

to guarantee that p is feasible. So, let na and nb be nodes in T such that na immediately

precedes nb along some branch of T, i.e. nb ∈ N+(na). Suppose p ∈ D(Ω(T,na)). We want to

show that p(nb) ∈ D(Ω(T,nb)), if p(nb) is defined.

Case 1: Suppose na is a choice node.

We know that:

Una(p) ≥ Una(p
′),∀p′ ∈ Ω(T,na).

Computing utility relative to the set of possible worlds W:∑
w Pp(w|S(na))U(w) ≥

∑
w Pp′(w|S(na))U(w),∀p′ ∈ Ω(T,na).

By Autonomy:
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∑
w P(w|pS(na))U(w) ≥

∑
w P(w|p′S(na))U(w),∀p′ ∈ Ω(T,na).

But our definition of plans/continuations guarantees that plans are identical with their

continuations pursuant to choice nodes:∑
w P(w|p(nb)S(nb))U(w) ≥

∑
w P(w|p′(nb)S(nb))U(w),∀p′ ∈ Ω(T,na), where continuation at

nb is defined.

A second application of Autonomy guarantees:∑
w Pp(nb)(w|S(nb))U(w) ≥

∑
w Pp′(nb)(w|S(nb))U(w),∀p′(nb) ∈ Ω(T,nb).

By definition of U:

Unb(p(nb)) ≥ Unb(p
′(nb)),∀p′(nb) ∈ Ω(T,nb).

Since every plan in Ω(T,nb) has this form, p(nb) ∈ D(Ω(T,nb)).

Case 2: Suppose na is a natural node. Then p has the form ∧i[S(ni)→ p(ni)], where the ni’s

are the possible successors to na. Note that this is equivalent to∨iS(ni)p(ni). So, computing

utility relative to W, we have:∑
w P(∨iS(ni)p(ni))(w|S(na))U(w) ≥

∑
w P(∨iS(ni)p(ni))(w|S(na))U(w),∀p′ ∈ Ω(T,na).

By Autonomy:∑
w P(w|[∨iS(ni)p(ni)]S(na))U(w) ≥

∑
w P(w|[∨iS(ni)p(ni)]S(na))U(w),∀p′ ∈ Ω(T,na).

This is equivalent to:∑
w P(w|[∨iS(ni)p(ni)])U(w) ≥

∑
w P(w|[∨iS(ni)p(ni)])U(w),∀p′ ∈ Ω(T,na).
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Which is equivalent, by the Law of Total Probability, to:∑
w
∑

i[P(S(ni)p(ni)|∨i[S(ni)p(ni)])]P(w|S(ni)p(ni))]U(w) ≥
∑

w
∑

i[P(S(ni)p′(ni)|∨i[S(ni)p′(ni)])]P(w|S(ni)p′(ni))]U(w),∀p′ ∈

Ω(T,na).

Switching the order of the finite sums and abbreviating the plan:∑
i
∑

w[P(S(ni)p(ni)|p)]P(w|S(ni)p(ni))]U(w) ≥
∑

i
∑

w[P(S(ni)p′(ni)|p′)]P(w|S(ni)p′(ni))]U(w),∀p′ ∈

Ω(T,na).

Which is equivalent, by Autonomy, to:∑
i
∑

w[P(S(ni)p(ni)|p)]Pp(ni)(w|S(ni))]U(w) ≥
∑

i
∑

w[P(S(ni)p′(ni)|p′)]Pp′(ni)(w|S(ni))]U(w),∀p′ ∈

Ω(T,na).

Pulling the first term out of the inner sum:∑
i P(S(ni)p(ni)|p)

∑
w Pp(ni)(w|S(ni))]U(w) ≥

∑
i P(S(ni)p′(ni)|p′)

∑
w Pp′(ni)(w|S(ni))]U(w),∀p′ ∈

Ω(T,na).

Which is equivalent, by definition of U, to:∑
i P(S(ni)p(ni)|p)Uni(p(ni)) ≥

∑
i P(S(ni)p′(ni)|p′)Uni(p

′(ni)),∀p′ ∈ Ω(T,na).

Which is equivalent to:∑
i P(S(ni)|p)Uni(p(ni)) ≥

∑
i P(S(ni)|p′)Uni(p

′(ni)),∀p′ ∈ Ω(T,na).

Which is equivalent, by Autonomy, to:∑
i Pp(S(ni))Uni(p(ni)) ≥

∑
i Pp′(S(ni))Uni(p

′(ni)),∀p′ ∈ Ω(T,na).

Which is equivalent, given the causal structure of T, to:∑
i P(S(ni))Uni(p(ni)) ≥

∑
i P(S(ni))Uni(p

′(ni)),∀p′ ∈ Ω(T,na).
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But then:

Uni(p(ni))U(ni)(p′(ni)),∀p′(ni) ∈ Ω(T,ni),

which is what we aimed to show.

�

Whatever one thinks of Autonomy then, it at least has this virtue: agents whose credences

conform to it may abide by both CDT and Dynamic Optimality without contradiction.

The extent to which Autonomy is necessary for the avoidance of dynamic suboptimality

on the part of causalists is a bit more difficult to spell out. Without relatively strong

assumptions about the structure of an agent’s attitudes, I doubt that a non-autonomous

causalist will invariably fall prey dynamic inconsistency. However, the conditions under

which they will do so are still quite broad. In an appendix, I construct a recipe for

subjecting causalists with non-autonomous credences to failures of Dynamic Optimality,

granting some additional assumptions about the agent’s attitudes and allowing myself to

employ a more narrow analysis of causal probability than the generic one that has largely

sufficed for our purposes.

3.6 Conclusion

Barring a rejection of conditionalization, Autonomy is a causalist’s only serious hope for

consistently satisfying Dynamic Optimality. At this point, many will no doubt be inclined

to give up on one or both of CDT and Dynamic Optimality. Autonomy, after all, is a very

strong principle to embrace as a rationality postulate. It essentially precludes rational

agents from ever facing Newcomb problems or from holding their own choices to be

potentially correlated with causally irrelevant states of the world, e.g. the behavior of
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a physically remote twin. This may be a bridge too far for some, and I can’t say I lack

sympathy for such skeptics. Still, the retreat from Autonomy is an unpleasant one. Aban-

doning CDT is a gloomy prospect, especially since, as argued in Chapter 2, EDT offers

no safe harbor to sail to. Jeffrey’s theory either faces its own dynamic choice troubles or

requires an analysis of planning conditionals that comes close to embracing the Autonomy

principle (in the form of Future Autonomy) anyway. And it is hard to imagine alternatives

to CDT and EDT providing much comfort here either.22

Holding CDT fixed, our choice is then between embracing Autonomy or abandoning

Dynamic Optimality. Given the merits I have ascribed to Dynamic Optimality as a prin-

ciple of instrumental rationality, it is worth considering whether Autonomy is really so

implausible as a characterization of ideal rationality. A typical human agent will no

doubt violate Autonomy, but then again typical human agents violate all the standard

rationality postulates of Bayesian decision theories. Might an agent that is more collected

and more reflective than we tend to satisfy Autonomy? If Ellery Eells is right, then the

answer appears to be ‘yes’.23 According to Eells, a sufficient degree of self-awareness

ought to screen off perceived correlations between an agent’s decisions and causally ir-

relevant states of the world. So, for example, while my behavior might provide evidence

regarding that of my causally isolated twin by way of revealing something about our

shared action-guiding attitudes (e.g. beliefs and desires), once these decision inputs are

fixed the evidential connection between our behaviors may be broken. Eells held that

such self-awareness is partially consistutive of practical rationality since an awareness of

one’s own probabilities and utilities is crucial to the first-person application of decision

22True, the dynamic choice properties of non-standard theories like updateless decision theory ([100]) and
functional decision theory ([99]) are, in my view, their main selling points. Still, the absurd recommendation
of these theories in cases like Transparent Newcomb reveals the cost they pay to acheive these results while
shirking Autonomy. Further, the Benchmark Theory of [97] is likely to face its own dynamic worries, though
this is perhaps worth investigating more closely.

23See [25] and [26].
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theory. If correct, this observation would obviate the need for causal decision theory, at

least in the case of ideally rational agents, since its verdicts would always agree with those

of evidential decision theory. Eells is getting at something close to Autonomy here by an

entirely different route.

We might also instead view Autonomy as a requirement characterizing the ideal endpoint

of rational deliberation. This thought seems to be in line with Eells’ mature formulation of

his defense of EDT in terms of deliberational metatickles.24 On this view, an agent might

reasonably start out deliberation with non-autonomous credences, but as she deliberates

she goes through a process that includes a growing awareness of her own attitudes and

dispositions that ultimately screens her choices off from all but causally downstream states

of affairs. An exact dynamics that conforms to this desideratum and its implication for

contexts of sequential choice are well worth investigating.25

Autonomy may also find a natural home in the quite different approach to reconciling

EDT and CDT proffered by Huw Price.26 According to Price’s doctrine of EviCausalism,

evidential significance conditional upon a free act from the agent’s perspective is con-

ceptually constitutive of causal dependence. So, for example, a fully rational and free

agent who really takes her decision to cooperate in a Prisoner’s Dilemma as evidence of

the behavior of her twin must, contrary to common supposition, regard their decisions

as causally intertwined. If correct, this leads directly to Autonomy. However, Price often

seems to think of the ‘evidential’ probabilities at play in his arguments as distinct from

an agent’s actual epistemic probabilities. For him, they are rather agential probabilities.

24[26]
25Note that such a dynamic reading of Autonomy may, unlike a static reading, leave room for practical

divergence between CDT and EDT if an agent’s choice of decision theory impacts which autonomous credal
state her deliberation terminates in. For more on deliberational dynamics, albeit not versions that hope to
offer convergence to Autonomy, see [79], [7], [47], and [50].

26[67]
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Hence, it is not clear to what extent Price actually means to be reconciling EDT and

CDT as I see them. Still, to the extent that he does mean to carry out such a reconcilia-

tion, EviCausalism may supply an alternate route to defending something like Autonomy.

However plausible one finds the arguments of Eells and Price, the lesson of this essay

is clear. Any agent who takes her choices to be non-causally correlated with states of

the world may well find herself in a precarious position vis-a-vis sequential coherence.

Decision theorists thus face a dilemma: either forsake Dynamic Optimality as a standard

of normative adequacy or disavow the rationality of credences that treat acts as evidence

for states that they have no tendency to cause. Which horn to embrace is a matter the

reader must judge.
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Appendix A

Deriving the STP from Dynamic

Optimality

The Restricted Sure-Thing Principle: Let f , g, h, h′ be Savage acts and E ⊆ S

such that f and g are comparable under �E as are f h
E /gh

E and f h
E
′/gh

E
′ under �.

Then f h
E � gh

E iff f h′
E � gh′

E .

Proposition 7. Let T be a decision tree and n a node in T. Further, let an agent’s attitudes be

given by A and her plan admissibility function generated from A be given by D. If D(Ω(T,n)) ⊆

DFD(T,n), then �∈ A satisfies the Restricted STP.

Proof. Let S denote our domain of states and Z our domain of consequences. Further,

let A = {�E |E ⊆ S} be the set of preferences over conditional acts expressed by an agent,

and let Z be rich with respect to A. Granting Plan Reduction and Dynamic Optimality,

we wish to show that � satisfies the STP, or rather, the restricted version thereof. Let

f , g, h, h′ be Savage acts and E ⊆ S such that fE and gE are comparable under �E as are

f h
E /gh

E and f h
E
′/gh

E
′ under �. We then need to show that f h

E � gh
E iff f h′

E � gh′
E . Suppose

f h
E � gh

E. Consider the pair of decision trees represented by T1 and T2. Suppose that
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fE �E gE. Then, by Plan Reduction, {z2} < D(Ω(T1,n1)) = D(Ω(T2,n1)), and so, by Dynamic

Optimality, {z1, z2} < D(Ω(T1,n0)) and {z1, z2} < D(Ω(T2,n0)). By another application of

Plan Reduction, f h
E � gh

E and f h
E
′
� gh

E
′. So, the condition posited by the restricted STP

holds if fE �E gE. By analogous reasoning, the result would of course hold if gE �E fE.

So all that remains to be considered is the case of fE ∼E gE. To show that f h
E � gh

E iff

f h′
E � gh′

E in this case, consider trees T3 and T4. We know this could only fail if f h
E � gh

E and

gh′
E � f h′

E (or vice-versa). Suppose, toward a contradiction, that this were the case. Then

we know, by richness, that there exist acts x and y that are state-wise dominated by f h
E

and gh′
E , respectively, yet which preserve the above strict preferences. Moreover, statewise

dominance then guarantees that xh
E is preferred to x and hence also to gh

E. Similarly, yh
E
′

is preferred to y and hence also to f h′
E . Hence, by Plan Reduction, {z1, z3} ∈ D(Ω(T3,n0))

and {z1, z2} ∈ D(Ω(T4,n0)). And, thus, by Dynamic Optimality, {z3} ∈ D(Ω(T3,n1)) and

{z2} ∈ D(Ω(T4,n1)). But this is incompatible with Plan Reduction and the assumption that

fE ∼E gE. So, it must not be the case that f h
E � gh

E and gh′
E � f h′

E (or vice-versa). Hence,

f h
E � gh

E iff f h′
E � gh′

E , and the restricted STP is established.

n0

n1

γ(z3) = fE

γ(z2) = gE

E

γ(z1) = hEE

n0

n1

γ(z3) = fE

γ(z2) = gE

E

γ(z1) = h′
EE

Figure A.1: T1 and T2, decision trees.

�
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n0

n1

γ(z3) = xE

γ(z2) = gE

E

γ(z1) = hEE

n0

n1

γ(z3) = fE

γ(z2) = yE

E

γ(z1) = hEE

Figure A.2: T3 and T4, decision trees.
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Appendix B

The Dynamic Inconsistency of

Non-autonomous CDT Agents

Here I sketch a loose recipe for subjecting causalist violators of Autonomy to dynamic

inconsistency or, equivalently, violations of Dynamic Optimality. The recipe is only loose

because it makes various assumptions (e.g. that we can offer the agent gambles with

arbitrary utility payoffs in such a way as to avoid interfering with her posited credences).

Still, it suggests the fairly general tendency of non-autonomous agents to prove suscep-

tible to dynamic inconsistency. I also assume in what follows that we understand causal

probabilities in terms of an assumed partition of dependency hypotheses specifying the

various ways in which the propositions being supposed (e.g. a set of act propositions)

might causally affect the world. This means that there will be a proposition S such that

PA(S) , P(S|A) if and only if this is true when S is replaced with some dependency hy-

pothesis and so we may think of the violation of Autonomy as occuring with respect to a

dependency hypothesis.
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Let a decision problem be given by a set of acts A = {A1, ...,An} and a set of depen-

dency hypotheses K = {K1, ...,Km}. Suppose that the agent violates Autonomy so that

P(Ki|A j) , P(Ki) for some Ki and A j. Then there is a pair of acts Ax and Ay such that

P(Ki|Ax) > P(Ki) > P(Ki|Ay). We want to construct a decision tree in which the agent ex-

hibits dynamic inconsistency. To do so, we extend the initial static decision problem to a

sequential choice problem in which the agent is asked to bet on Ki after deciding amongst

the acts in A. If the agent opts for any act other than Ax or Ay, a uniformly unfavorable

wager is offered to the agent that drains away any motivation to pick an act aside from

these two.

If the agent picks Ax, she is then offered b1 = {a,Ki; b,Ki}. If the agent picks Ay, she is then

offered b2 = {c,Ki; d,Ki}. A dynamic inconsistency would occur if the prior expectation of

taking b1 and b2 were negative, while the posterior expectation of each were positive.

(1) P(Ki)a + P(Ki)b < 0

(2) P(Ki)c + P(Ki)d < 0

(3) P(Ki|Ax)a + P(Ki|Ax)b > 0

(4) P(Ki|Ay)c + P(Ki|Ay)d > 0

From (1)-(4) it follows that, if a, c > 0
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(5) − b
a >

P(Ki)
1−P(Ki)

(6) −d
c >

P(Ki)
1−P(Ki)

(7) − b
a <

P(Ki|Ax)
1−P(Ki|Ax)

(8) −d
c <

P(Ki|Ay)
1−P(Ki|Ay)

So, from (5)-(8) we get:

(9) P(Ki)
1−P(Ki)

< − b
a <

P(Ki|Ax)
1−P(Ki|Ax)

(10) P(Ki)
1−P(Ki)

< − d
c <

P(Ki|Ay)
1−P(Ki|Ay)

The violation of Autonomy guarantees that there are values of a, b, c, d that satisfy these

inequalities. This suffices to establish the dynamic inconsistency.
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